AD-A173 613 IMPLEMENTATION OF GRAPHICAL LANGUAGE FOR RCCESSING 11
DATABASE(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
A HORASAN 28 JUN 86

UNCLASSIFIED

o

Illll_'_s';
| um' =] Y O

rr

FF

‘CRACOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS. 963.4
- 4
» .

' ‘ |
P ——————————— e
<=1

4
4"
iy
s,;‘ ..
by ‘
‘ ”
Y
v .
) i
™ '
Y

$$$ %! "). {%
SOOI '-C-.
RXOIOI0- Yo) 63 *']

n'v

R RS
?’:;’ l,‘. 4 ‘4': ‘.’ .'*'5{ F ‘ﬁ'(‘l t

: y U) "{ \."‘ -‘u'..’,
ﬁ Lhe e W.! X b
\0 0 A - 5 _#«,a.‘,‘.m‘@;f{\‘,.ﬁfq@»,_} i ,'}r‘.’-’-'»"&h"

e b h
e

l “.
l K '(?t “L‘q fl A ‘;:“‘Q,.; .“Q ’;. \(. "‘si l O

B

™
i i |
¢ o NAVAL POSTGRADUATE SCHOOL
;” » . N
~ Monterey, California
8
B
2
:3.:’ o b -4
:,“ ? .3‘ .
% .
- aELE
:) Lo Moe
y < \;‘:; R
THESIS
. IMPLEMENTATION OF GRAPHICAL LANGUAGE FOR
I ACCESSING DATABASE
A
k by
Alparslan Horasan
June 1986
)
'; p E:j Thesis Advisor: C. T. Wu
f Ll Approved for public release; distribution is unlimited.
' 3
o
[—

56 11 © OLK

'l;:"'i

A

) . cme o . P » . TR A L
‘l" S5y " Dl P N "' '.1’.’ e 8 P o AT AT N 8 Cy

L "‘16” “' "‘ ‘ "“l.l’g"".. B L o of); AT J "e‘l.l la r! . .' RN 'J.u.\'t L0

ORITY 7 AD.A1713163
REPORT DOCUMENTATION PAGE

i Ta. REPORT SECURITY CLASSIFICATION Tb. RESTRICTIVE MARKINGS
O UNCLASSIFIED : e ea——

P * 72, SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/ AVAILABILITY OF REPORT

v Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING -SCHEDULE distribution is unlimited

.y
‘* 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

A;:'

oA

!.

i 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION

) . ~‘

Naval Postgraduate School (tf applicable) Naval Postgraduate School

£ 92
.:;: 6¢c. ADDRESS (City, State, and 2P Code) 7b. ADORESS (City, State, and ZIP Code)
ma Monterey, CA 93943-5000 Monterey, CA 93943-5000
U .
ut
| AP

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

" ORGANIZATION (if applicabie)
i’”
K
R 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
! :i PROGRAM PROJECT TASK WORK UNIT
o ELEMENT NO. [NO. NO. ACCESSION NO.
\?"
. T1 TITLE (include Security Classification) UNCLASSIFIED

o

Implementation of Graphical Language for Accessing Database

I
) 12 PERSONAL AUTHOR(S)

i Alparslan Horasan

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT
2N b____&__Masters Thesj .M.===-I-oa= 1986 June 20 —31
% 16. SUPPLEMENTARY NOTAHON
i)
iﬁ? 17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
A FIELD GROUP SUB-GROUP GLAD, Definition Window, Schema Design Area,
. Manipulation Window, Help Windows
R
4 ‘9 ABSTRACT (Continue on reverse if necessary and identify by block number)
K This thesis is a part of the implementation of a new graphics user
«g. interface for accessing a database proposed in paper (WU86). As a
r result of this study, the data definition language of the proposed
i graphics user interface GLAD (Graphical Language for Accessing
56 Database) has been implemented. This interface allows a user to
o create a database schema graphically. It is easy to learn and easy to
;h use, in spite of conventional query languages. This thesis first discusses

% the general concepts of database and introduces the system that the
" implementation was achieved, then reviews the conventional query language
— and previously proposed graphical user interfaces. After describing
w the.magor features of GLAD, the implementation is explained in detail.
. A listing of the program that achieves the interface is also provided.
A .
R0 20_DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
NCLASSIFIEOAUNUMITED (] SAME AS RPT. [DTIC USERS UNCLASSIFIED

‘5 222 NAME OF RESPONSIBLE INDIVIDUAL 226, TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
R Brot. €. T, Wu 408-646-339] 22Wg
::" DD FORM 1‘73' 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
:0.1 All other editions are fbsohto.
‘!:-
b

N A (A SEC, P N N S o O Ol S A T O N R N N B
D .0:.‘,3.‘.,0,. W :’s'.",l.‘.," ,., [i Py .|}\o XA O HERCR AR . AR

(L0

Te Ny 0 |4 &
‘:‘-’,"Aa 2.5, 5050 0w 0 it

Approved for public release. distribution unlimited.

Implementation Of Graphical
Language For Accessing Database

by

Alparslan Horasan
First Lieutenant, Turkish Air Force
B. S., Turkish Air War Academy, 1982

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL '
June 1986 .
Author: ———%’u«/\d“ Q/\MQ/W
Alparslan Horasan I

Approved by: %%%//

C. Thomasé Wu. Thesis Advisor

PN

Michehl 3/Zyda. Second Reader

e~ C et

ent Y. Lum. Chairman.
Degfartment of Computer Science

520)

.;:::c Kneale T. }

¢ . .

WAk Dean of Information and Pohi®y ences
¥

‘l

1y .) ‘
BOBCHONONCEAT ¥ ; - VAT Wt AT A A R g
B R R e T b RO SR 3% X B SN

.';. a.r- " “.\ BRN LAY LY, v

")

N
O

ABSTRACT

. This thesis is a part of the implementation of a new graphics user interface for
accessing a database proposed in paper [WU86|. As a result of this study. the
data definition language of the proposed graphics user interface GLAD(Graphical
Language for Accessing Database) has been implemented. This interface allows a
user to create a database schema graphically. It is easy to learn and easy to use.
in spite of conventional query languages. This thesis first discusses the general
concepts of database and introduces the system that the implementation was
achieved. then reviews the conventional query languages and previously proposed
graphical ;;ser interfaces. After describing the major features of GLAD. the
implementation is explained in detail. A listing of the program that achieves the

interface is also provided.

e - ———aey

 &+~:-slon For ‘
YT GRAgI
UL TR (]
Clnrwmennoced]
S Justifientin

U VS

{
{ By —

;_AD_iSt.rH'H teny/

Avail-' 14ty Codes
Lol nni/or
Lot Caeeinl

Al

DGO ¢ ‘ "X T PO R ' AP R R P R AR VIR I o R (AR DR e e S b I R R B R IR T S
‘!V'i.-s"t"'."’,' !"“'J W ! 0 W?‘h‘s“‘n ¥ Whig *‘ " 4. (.r 3 .ﬂ .' "(;k'.’\"w“ \.“.".,") l'."(N “{-\(-' -4".-"‘\. ‘o » '-' , “”

e

.
TABLE OF CONTENTS
I INTRODUGCTION .ouieoieeeeeteeecereeeeseeseesseseeeseseseeseseeess s eessaseesesessnesens 6
II. DIFFICULTIES IN USING THE QUERY LANGUAGEScccccoouene.... 10
| I PRIOR RESEARCHEScoovvuivmmitmceniereeeersessessssssssssssssssssssssssassssens 12
IV. DESCRIPTION OF GLADoooiimmemieeeeeceeseeeeeseeasnsseesieeeesssasenenes 15
g V. IMPLEMENTATION oooooeooeoeeeeeee oo eseeesseseseseseeseeereesseneeee s 18
‘ A. TOP LEVEL INTERFACE ...ooovvovomirveeennnreeeoseneeesssenesssseesesseenee 18
B
t:, B. HOW TO CREATE THE DEFINITION WINDOWcc..cooesven..e. 20
o
4 . C. HOW TO DRAW THE DIAGRAMooivmmieeieecererseeoire e 23
' D. IMPLEMENTATION ...ooommimireeemseeeieeeeosemeesesesereseesssssessassessons 25
' E. HOW TO PRESENT THE MENU ...oooooeereeereeeeeeeveeeeevernaan 30 .
A F. MANIPULATION WINDOW oo 34
E G. HELP WINDOWS ...oooiiiieeiueeeeeeeeeeeeeseossesseesesessesseesssssessessnsees 34
.' H. DESIGN OF THE DEFINITION WINDOWcoocoivuivmienerererenann. 35
' I. BACKGROUND OF THE DEFINITION WINDOWcceoovvvennnns. 35
. J. UPDATE THE RECTANGLEScooovvviivvieieieeeereeseeeeseessenennsees 37
K. USE OF THE MOUSE TO CREATE AN OBJECTccccoovvvnnn.... 38
7 L. DRAW A REGULAR OR NESTED RECTANGLEccccc.covven...... 39
: M. DETERMINE WHERE CURRENTLY THE MOUSE IS 40]
i N. IDENTIFY A RECTANGLE(OBJECT) w..ooovoeiveieeeseveeeeseeesenennan. 10
B !
R
:'.,

-

0 " L AR W , . u A S O AT N s DRI K S S A K
‘ot ’a',l a".o‘“tv. l.“l.’ Vel 7\.'.'0..%‘ ..a (L), -;‘i‘:"‘v. [) c'v'*,'ﬁ’. l‘u .‘,Q‘ -!“.. W8, q’ O\’. b t.; $ ’((WRGRCE . '4-"';‘50.’ W) "‘\’ :.‘“. n) QI‘:

0. MOVE A RECTANGLE(OBIECT) oo 10 4
P. DELETE A RECTANGLE(OBJECT) weoooevveeeeereeeseeeeeeeresereeeseeseeenee 41
Q. CREATE A RECTANGLE(OBJECT) - ovvveoeeeeerrreesresseeseeeseserenenne 41
: R. LINK ASSOCIATED OBJECTS WITH SOLID LINES ... 42
S. LINK ASSOCIATED OBJECTS WITH DASHED LINES 42
- VI. CONCLUDING REMARKS .ooovoeeoeeeeeoeeeeeeee e eeseeeeeseseeeeseeeeesenee 43
APPENDIX - PROGRAM LISTING w.oooooooooeoeeeeeesoeeeeeseeenenecnennmmmensenenene 45
o BIBLIOGRAPHY ...oooomeveeoeeeeeeeesseeeseeosseesesaosseeseesssssesssssesesessesssesssssoesenens 79

INITIAL DISTRIBUTION LIST ..ot 80

d .
ATy e 2 AT Vg A WY Vg Y Y DL P e) : (, P TR n 4
B N o U S AN T AT E S LA M 4L O K SOUICHNN

[}
[

MUNR ATV)

e hoa doa 4 2 W W W T W T o v——

i I. INTRODUCTION '

i

v§‘ﬁ

t‘)

B y
! A database model is a vocabulary for describing the structure and processing
B of a database. DDL(data definition language) is the vocabulary for defining the
X
")

kR .

oy structure of the database. DDL specifies the conceptual scheme of the database.
';l:ffo

‘ The data definition language’is used when the database is designed. and when the
Y

§::u: design is modified. DML(data manipulation language) is the vocabulary for
M

gl

!'Q‘l . .

ol describing the processing of the database. Processing could be changing or
" retrieving the database data. DDL and DML compose a query language.

W

§' A query language can be efficiently used only by sophisticated users such as
Ry

) database administrators and system designers. Experiences in using these .
at

e languages have shown even those people with computer science background often
s

)

e have difficulty using these languages. However, nowadays. they are not the only
:;: ones who are dealing with databases. Casual users who are not computer science
]

W : L

{::" professionals such as accountants. clerks. statisticians are the most frequent users
L

of the databases. They may not have the patience. ability, or desire to learn and

3

PP

to use these query languages. Difficulties in using these query languages will be

TRl e 2

reviewed in Chapter 2.

Because of the diversity of the users who are dealing with the databases from
"& casual to sophisticated users and difficulties using the query languages. a better

user interface is needed for the databases.

ot Y e e T e e e e T e L I e L ‘j
AR O O O R S S A N R o i S L TR AR AR RS

P TENL TP A IPe
X M

n:l, (N “.'f v

N T T WY

r

P (Pt

I

r B D .
LXMW F R » e

In the paper 'WU86|. a good user interface iz described as capable of
supporting computer science professionals and the growing community of users
who have to access the information in the database management system but who
are not trained in the use of such systems. To support those users, a good user
interface must have some characteristics. This paper categorizes them into four
categories. The first one is ease of learning. A good user interface must be easy
to learn because of the divel:sity of the users. Second is ease of using because of
the same reason above. The third category is that it mus.t be able to show what
data is stored in the database and what relations exist among them which is
known as database schema. Over the past years. database schemas have been
used to to explain the conceptual scheme of the database. However. it has never
been used for interfacing the database so the user does not have to remember the
types of records and attributes and relations.. The fourth one is the power of the
interface to be able to handle complex queries.

Graphical user interfaces have been proposed by so many researchers as a
solution to better user interface. The upsurge in development of graphical user
interfaces stems from the capability of the graphics in terms of visualizing the
concepts. Graphics has been used in many ways. However. they all lacked
fulfilling the features of a better user interface which is explained in [WUS86:.
Prior researches in this field will be reviewed in Chapter 3.

One of the approaches of graphical user interfaces is GLAD(Graphical
Language in Accessing Databases). GLAD attempts to eliminate the lacking

7

. ‘ , — o TES s T e AR e A S0
({\' ik, .‘J 531- ‘..I'.Q, F\éf'{“‘)"(L

(3

WY WYY VWS T

- ' ‘u‘ Ny

Fve

‘c": features of a good user interface that exist in other approaches. GLAD':
w approach is to be able to use to database schema to access the database. The .
. D) "
LW o o
Y features of GLAD will be reviewed in Chapter 4.
M)
:'l:q!\ *
GLAD consists of two components which they are the same as the other
N
< el . . .
z;'Q; database management systems: DDL and DML. This thesis mainly covers the
&0
5'“”
T
fi;§§§~ implementation part of GLAD's DDL. DDL was implemented on system tisit
0 which has a graphics capability that enabled us to implement the DDL part of
¥ .!.‘
R0 -
 } . -
:::;: GLAD. Implementation will be reviewed in chapters.
LN
‘-.I!u'
. Graphics workstation that DDL was implemented has a high resolution
p
PRAT
% graphics display with an addressable screen space of 1280 pixels(height) by 2024
A
_:.:’g.' ' pixels(width) in a 19-inch display. Workstation has a keyboard and mouse as a
u'::;" standard input. Mouse consists of three buttons: left most buttc used for)
N :
Yoy . : . . .
:: 'l: selecting and moving windows. middle button used for pop-up menus and right
e
[0
most button used for creating and erasing the windows. Actions are done either
LIP)
“.7 . . -
:;:'z by these three buttons or selecting the action from the pop-up menu and letting
ot
g the go command run.
e This workstation offers multiple window capabilities and a desktop
vt"’..
el
00
!"::’ methaphor. Multiple windows enable the user to deal with different windows
'Q
' without loosing his attention.

Desktop consists of icons. each icon representing a program or a separate

device. For instance, Unix operating system is represented with Cshell icon.

Once the user creates the Unix OS window by selecting and letting the Cshell icon
run. he gets a separate device that works as a separate unix workstation.

With this graphics capability. user can create a database schema by creating
the records and the relations. The goal of this thesis is to implement the
graphical DDL facilities. so user can see which data is stored in the database and

which relations exist among them by scanning the schema.

[I. DIFFICULTIES IN USING THE QUERY LANGUAGES

In this chapter we review the major difficulties in using the query languages.
Following factors can be considered as the major reasons for the difficulty in using
and understanding the query languages.

There are so many things to be recalled by the user. Before the user expresses
a query. he has to remember the names of the record types and the attributes.
User can only find the details of the attributes such as the format and the units of
the attributes by exploring the data and looking the attribute definitions up in
the dictionary. To determine the meaning of acronyvms used to represent record
types and their attributes is another problem. These problems become worse
when th_.e database has hundreds of records and thousands of attributes.

Most query languages are based on mathematical concepts such as predicate
calculus or algebra or set theory. These mathematical concepts leads to a
language with a solid foundation: often. however. users don’t relate to
mathematical concepts such as range variables. join clauses or projections. More
explicit models should be used to support the non-expert user interface to
complex data.

To formulate a complex query correctly on the first try is considered as
success in dealing with the database. There is always a doubt as to whether the

query is complete or whether some conditions are missing. Sometimes user does

10

R S Ry p gy g L X TR o L e TAS G B Ao T
O¥'y, ’l‘ i "‘,"!.‘ 1Y v "-\ gl. - ,q*g - . 1"‘!% F¥) j\.)*.»v‘.

o L LS
Al Al A

not have the complete query in his mind. Instead of a complete query. building a
query in a piecemeal fashion with feedback of partial results would be more
beneficial to the user. These query languages does not support experimental.
exploratory nature of formulating queries in piecemeal fashion.

Complex schemas with hundreds of elements in it. could be overwhelming to
deal with it. Most query systems have only two levels of detail at the schema
level: record(relation set) z.md attribute level. Even when second level is
suppressed. the user still has to locate the relevant record types. At the attribute
level. there are thousands of attributes of a record type to be checked to formulate
a query. It is very hard to find the relevant record types and attributes to
formulate a query.

Complex databases often have a large number of data sets that deal with
different subject matters. It is a hard job to know what and where data is being

kept. Lack of viewing the database generally with the query systems. blocks the

users to select subject matters that are of interest.

11

i

- -

ANAta T A ..,
-’ ‘-(\'-J_ -

"~

l" s" N o4 -~ - - T om - I.' - ‘e - R.', "y . e N.‘ L P L . ..
I B N S S A A N A A SN A AT IS AR

v R

III. PRIOR RESEARCHES

In this chapter. we review some of the previously proposed graphics user
interfaces to understand the concept of graphical user interfaces.

SDMS (Spatial Data Management System) is a sophisticated data browser.
The representation of the qu.ery and the output data is done thorough the use of
"icons". which are graphical tokens representing database objects. With this
system the entire database is shown to the user as icons on multiple graphics
terminals. A user could move his cursor to an icon of interest and zoom to find
more detail.

The graphical presentation of the information encourages browsing and
requires: less prior knowledge of the contents and organization of the database.
That means, user does not have to specify the information precisely and does not
need to know exactly where in the DBMS the information is stored.

SDMS uses three color raster scan displays and one mouse for presenting and
accessing the data. One of the screens presents the entire icons. representing
different types of data in the database. (This feature corresponds to the use of
icon in the system #siv. This system also uses icons not only to represent the

database but also to represent different types of applications or systems

programs). The other screen displays the magnified portion of this data. By

St

‘o using the cursor the entire data can be scanned. By zooming the Icons. the J
information on this specific icon can be retrieved. -
. The weakness of this system is that it does not support complicated query

languages. For example, if a user wants to compare the informations of two

P
.

S PR
o D ok W

icons, he can’t submit a query to do this. He has to find these two icons. get the

.

information from them and compare them. This shows, SDMS only provides

weak query languages.

TIMBER (Text, Icon and Map Browser for Extended Relations) is a user

. e P
v o
.”o”ﬂ -

friendly. graphics oriented browser for relational database. Timber is more
sophisticated, comparing with SDMS. In addition to data browsing. TIMBER
also gives a czipability to browse texts, maps, and icons.

This system provides a sophisticated visual interaction with the data in a text

;:. file. The text stored as database objects can be browsed and updated by users
n.l
14V
‘:: with this system. It also provides a capability to display the geographic data.
0 Mainly. TIMBER is a sophisticated version of SDMS. But it does not
!
‘_i provide a means of representing the data and the relation between them. which is
Yy 3
)
N called as database schema.
':;: One of the systems which uses graphics devices as tools to interface to
~
: databases is GUIDE (Graphical User Interface for Database Exploration). This
:; system contains subject directories, help messages. zooming facilities to the
1)
0 . . .
2 relevant part of the database schema. and partial query formulation with -
R

intermediate results.
-
R 13
D)

ARWN (B
¢

e (OQ () ['
OGO GA AR AONCIHOION A ¥ X ;,0,, Wy

W&
AhG
5

WA : .
i '\!n*\,: o, ;“ ~ P

This system offers a graphics interface to the user. The database schema 1=
displayed as a network of entity and relationship types.

During the data definition stage. Data base Administrator (DBA) provides
information about the schema. in addition to information on entities (objects).
relationships, and their attributes, their examples and explanations of these
objects. The graphical layout of the schema is fed in to the system in this stage.

In terms of visualizing database concepts. this system provides a better
interface then those mentioned above. But lack of aggregate functions. use of two
screens (one as a key board and also a query result presentation, and another for
schema representation) and use of two separate diagrams (Entity/Relationship

diagram and subject directory) for representing database schema are considered to

be weak points of GUIDE. .

14

' - T e TR ATAT AT AN A ATV
)y l.Q » AN ‘.!.‘.".O t.A " e A

- .’M‘-’\J,'\-‘:.’_; {_‘. _'.1.‘.-_:. ‘_-.1_:\}'\.‘» :. ':""'\1‘ ..,:v » A

IV. DESCRIPTION OF GLAD

::; This chapter describes the features of GLAD.

The main objective of GLAD is to provide users-with fast, easy access to large
ih volumes of data. GLAD achieves this objective by displaying a diagram of the
0 database schema. representirig the data stored in the database and the relations
among them. This diagram is capable of represen{ing real world abstraction
Y concepts such as aggregation. generalization. and classification.

Aggregation is a grouping of objects and subobjects. An aggregate object

::;t . consists of atomic and non-atomic objects. Atomic objects are the ones that they
p

:t‘. are an aggregation of one system-defined or a user defined "base" objects(string.
;;: | number_,‘ boolean, subrange, enumeration). An aggregate object is represented
§§§ with a rectangle with the name of the object written in it. The non-atomic

subobject of an aggregate object is represented with a separate rectangle, with the

, ‘ . . .

m;:s name of the object written in it. The relation between them is represented with a
[)

ohe

o solid line.

"; Generalization is a grouping of objects which they can be regarded as a
¥

N

‘,’: member of a general category. The objects that comprise the generalized object
Y

Ay

. are called specialized objects. Generalized object is an abstract representation of
PR

iy

s a group of objects. Each member of a generalized object can also be an abstract
A .
0:: representation of an another group of objects. This level of abstraction provides
-“Q

0 15

" : 3 P FXOAE > AR o P NP AT WP A TR TP AT AP e a P N] Y P \» AreA)
A A G SRR S L LK LA AL I Nl St A LL O LD o I AC AR £ M T ML ANNN

hesa b Al o o -

y
.fc‘_,{
T
L] e“
&"!‘l’
o) user to deal with the same type of data without loosing his attention in the
i:::o

13 ‘ - . 3 . -

‘ diagram. A generalized object is represented with a nested rectangle and the
;éf‘_" name of the object written in it.

“ ﬂ‘ An association between a generalized object and another object is represented)
. with a solid line as it is represented with aggregate objects. When one or both of
f:;" the objects are specialized objects the relation between them is represented with
e

dashed lines.
The last abstraction concept we mention here is Classification. Classification
o imposes that each data item stored in the database is an information about some

object. Each data item of an objet is called as the member of the object.

c ,:v

d’._ N

-"': To indicate that an object can have either one subobject or another. a circle is
0

W used attached to the upper line of the rectangle. This circle can be used by all
N i)
0y the objécts in the diagram. This type of relation among the objects is called as
" 03 J g

i.: '

oy disjunctive relati
.':: Isjunctive relation.

L7t

. GLAD diagram to represent the database schema fulfills one of the features of
.
B : . : . :

ft:: a good user interface: descriptiveness. The other features. easiness in learning and
di’..

T

i using. of a good user interface is also fulfilled effectively by GLAD. GLAD is easy
Tt
& }_ to learn and to use. User does not have too much to learn to create the diagram.
LA
U LY
i' » Only concepts that user has to learn is that the regular and nested rectangles.
T
iy solid and dashed rectangles and circle. By knowing the meanings of the
¥
a0 . . :
::::: components of a diagram and the use of the system. user is ready to create the)
'A‘::i

0.'

RN

ol 16

b

l';?:

»
:

L a0 N4 AT AN e e
A AT Aty -".,(o

< VAV LT CARANINT A s - WP A N
) Ay 0 ' x AN S R L LW . ALY
RSO AT DRSO KDL & et R SR é ol'o\'m WENIARN,

'&,A

AT Y ! ; YV S X Qe K " A - PP R e
T A s M OO 12 RN LS 8 St S

diagram. As to using the system. interaction is done with the mouse. by moving
the mouse to the desired operations and clicking the buttons.

How the objects and the relations among them are represented will be
reviewed in Chapter 5. Chapter 5 also talks about the use of the system in order
to create the diagram to define the database. One of the features of a good user
interface. powerfulness in expressing the complex queries. is mainly the concern of

manipulation part. Since the concern of this thesis is to be able to define a

database by using graphics facilities, manipulation of the database is not detailed.

17

5 3

O (.:-"‘>.“.
SN

DA
]

\' I, ’ . 0% % BN
RRUA N AN

e "'."Q';{‘f

9 1. WO

V. IMPLEMENTATION

A. TOP LEVEL INTERFACE

Graphical database management system is represented as an icon on the
desktop. As the other icons represent different types of application or system
programs. database icon represents the windows opened for graphical database
management system. A window can be created either by putting the mouse on
top of the icon and clicking the right most button. or selecting the option from
the pop-up menu by middle button and letting the "go" command run.

When the DB window is created, a top level menu presents the top level
options for the database. Top level menu consists of 4 option boxes. representing
four types of actions to be performed: Define DB, Manipulate DB. Help. Quit.
Define DB box represents the window in which the creation of the database
schema is performed. While creating the database schema. the records are also
created. and the relations between the records are set. Creation of the database
schema and setting the relations between them will be detailed later in this
chapter.

Even the concern of this chapter is Define DB window. | would like to briefly
mention of each top level option. One of the windows opened for the
manipulation of the database which will not be detailed further. is Manipulate DB

window. The actions such as update. query. retrieve are achieved on this window.

18

» . 5> >
(B »0

e T e e AT e e T e e o> e R NA T AT A A T
+ y - . ‘. (-) i . g .‘“- .'0 . . . (. { . 4 "» N.\ - ..

ROARRG,

To keep the completeness of idea of GLAD Manipulate DB window is represented

with a blank window. When Manipulate DB window is created a menu asking the

vy name of the database to . be dealt with is presented. Designing the actions on
‘v;;.

o . manipulating the database is not the concern of this thesis.

s Help option box. on the top level menu. represents the windows that give
‘!ﬁf information about defining and manipulating the database. When the Help
58

option box. on the top level menu, is selected with the mouse and right most

i,'.:1 button is clicked. the top level menu goes away and another menu containing the
e

'{:? options DB Definition and DB Manipulation is presented. This gives the user the
= . opportunity to learn how DB is created and manipulated. If the user wants
%

3‘;5'3 . information about defining a database, he puts the mouse in the DB Definition
Ay

'42:‘ option box and clicks the right most button. This creates the window that will be
E;:E . filled out with the information about defining a database. Pop up menu with an
¥

,EE: Ezit option is always available to exit the window and go back to Help menu.

The other window DB Manipulation will also be filled out with information about
::I, manipulating the database. There is also QUIT option to go back to top level
menu.
it The windows .describing the actions. can be put to the corners of the screen
s so they can be read in case information is needed. However. for a sophisticated
- user. there might be no need to review. Therefore, these windows might be
reviewed or not depending on the knowledge level of the user on dealing with the

database.

e 19

R -

s ; ; .» : ‘ : x e . -
AL) I , AN o) N 3 O (R Ny Ny . -
ot IO ot | 2 £ LI RS S AN ST ORI, TYeCrb R

The last option box on the top level menu ix QUIT. When this box Is

selected and the right most button is clicked. all the windows associated with the

e graphical database management system are killed. Killing a window also kills all
.
:: > the windows associated with the program. After killing the window. user either
e?ﬂl)
e gets to desktop or to the other windows crea-ed before the killed window.
o
s
ity
:Eé:‘ B. HOW TO CREATE THE DEFINITION WINDOW
Eaga |
i ‘
Once the user decides to define a database. he puts the mouse in Define DB
e
::IE.: option box. on the top level menu. and clicks the right most button. This creates
:..‘l.‘
.l;"
j::g? the Define DB window. which is going to be used to draw the diagram
%"‘:' representing the database schema. When the user gets the window. he is ready to
Xy start creating the database schema. Only mouse is used to do this. Window
Ry
consists of three sections : the section that the type options are presented which is .
o .
e on the upper left area of the window. the section that mode options are presented
"
o,
oy which is in the upper right area of tl: window and the section that the diagram is
) “ drawn. which I call schema design area. Type options presents the types of the
el
R
K iQ objects and relations to be created. Mode options presents the actions to create
‘:‘!.g
and edit them.
2
,’0‘ A diagram. representing the concepts mentioned in Chapter 4. consists of five
B
L)
;t: components. The components are presented on the upper left corner of the

window. which I call the type option bores. The components of the diagram and

=;e'§ :

e what they represent is shown in Figurel.

o 20

(]
s R . AT e
A ATHEREN TN AT Kt oo Kt X T (B £ d P OIS AT VRTINS

bt oBJeEcT | |aENnoBy!| | ——— | - o -

N
gg Represents an aggregate object or a

?é non-atomic object

") -

Represents a Generalized object

Ry Represents an association between

R objects

X ..

}u T =ET T Represents an association between
) | |

;ﬁ objects when one or both associated

oA
-

F

objects are specialized objects

ol

a8

Used by aggregate and general-

"

gy

‘N ized objects. Represents that an object

can belong either one object or another

Figure 1

21

P\

':' -

:'0

¢ -

o °

v

|‘|

W

" When Dcfine DB window is first opened. a menu asks the user to enter the p
e

» name of the database to be defined. Diagram is saved under this name. This .
1" 7

1 R

\ diagram can be also called by the manipulation part with this name. Diagrains

‘ -

i

also could be represented with icons. By giving a meaningful shape. each icon can

»

represent a diagram without giving a specific name to it. Benefit of using icons

LA,

instead of names is not to have to remember the names of the databases.

The mode options, on the upper right area of the window, gives the user the

(-

capability to draw and edit the diagram. Modes can be selected by clicking the

hla, € &

left most button. Each time a mode is selected. the box that represents the mode

i~ highlighted. Mode options consists of four components: Draw, Move, and

LS

\ Delete. Draw mode is used for creating the aggregate and generalized objects and
W,

v creating the links between the objects. This mode is also used to draw the names)
)

b3 of the objects. Move mode is used to move the object in the schema design area.

?

Y

By moving the objects. they can be put to the appropriate places in the diagram.

¥

i'.: Delete mode is used for deleting an object. The mode option boxes is shown in
¢
‘:5 Figure 2.

‘\‘

e

b

-~

Draw Move Delete

Y
S
(-
S
N'
b, Figure 2 ..
1
' L
e 22

Y
0
Yy

CIPSE T I R B R I I RRTRE
-"\\‘\- CESE LRSS R AN
) ... |’.. il : ’W =

¥ . m - e R .
N - 0 Py Q Q ; Vi
R T L S AL S D00 11, AR St S U NI S S NN S)

o
v
o -
ey
e C. HOW TO DRAW THE DIAGRAM
When Define DB window is presénted the default mode is Drauw mode.
,;:;,:; :
',,:\'.g because there is nothing created on the schema design area. User has a choice to
‘-'s;'t
Ay
K
‘_‘;5.,‘:! begin with either aggregate objects or generalized objects. If he chooses to create
;:"‘:) an aggregate object. he selects the type option Object and clicks the left most
Aol
‘::x: button. This brings a menu that asks the name of the object and the relations
?f*f:g .
existing with other objects. The menu is sent by pushing the middle button and
W letting the go command run.
"o‘l
e
::efl After this menu is sent, another menu is presented that asks the attributes of
:;" the object. After the attributes of the object is received. user is ready to create
58
e his object by drawing the rectangle. To do this. user puts the mouse in the
B
L . . .
i schema design area and pushes the left most button which will be the upper left
§ F"‘ .
‘:" i: corner of the rectangle. With the movement of the mouse a rectangle is created as
I'Q
:f. \ being the last position of the mouse is the lower right corner of the rectangle.
R When the mouse is released a rectangle created and the name of the object is
"
) drawn in it.
BRS
e""'i.

To represent that the objects have a disjunctive relation. user has to touch

the box. in which there is a circle. before drawing his rectangle. If circle box has

PP

Co

N,

§ }_ been touched. the rectangle comes with a circle in it.

R

. In order to create a generalized object. user puts the mouse in type option
1

1% 2

‘0 ‘ GENOBJ box and clicks the left most button. This prompts a menu asking the
L%

names of the objects. comprising the generalized object and the name of the

o)

:1";‘2

N éi 23

H

A

r{"ozl

X

o

R

~

. g
<Y 1o . . .y -y an -
R DU I A ST OA RN l'-\.i:"},‘ﬁ [,l.) YW'e

o

5 ‘.) ... ‘:) " A . 2 o ,’ . . .
Rat, T3, e Migh, B PCASICR P Yo P A 9'&': ',:'0‘:'.’!‘.‘!';‘.0. By !l KT .'o WY

e Ralke Vol S v St

06
3

v

' objects which the object has a relation. Also the circle box can be touchec 1o put
!‘.,

, a circle inside the box to represent a disjunctive relation.
¥4
A
:': After all the objects in the schema have been created. they can be put
1$
A\t anvwhere in the schema design area. by selecting the Move mode. An object can
[N
;:: be moved by selecting the object with mouse and pushing the left most button.
;:: '
é}: By moving the mouse. object is also moved to the place which is appropriate in
,'I’J .

the schema. By releasing the button. object is set to the new position in the

DN

'*.'n,,:

‘ diagram. All the objects can be put to the appropriate places in the schema with
EX

R this method.
IR . . .
a::'\ Before creating the relations. if there is. the objects with wrong names. or
)
,‘.: unwanted object can be deleted in Delete mode. To delete an object. user puts
"'.‘G!

. the mouse in the rectangle. representing the object to be deleted and clicks the .
N
wR . .
ik left most button. This erases the rectangle(object).

.
oM After the objects have been put to the appropriate positions in the diagram.
4 we can go back to Draw mode and create the links representing the relations
P .
A between objects.
- To draw a solid line between rectangles(objects). which represents and
s
™ association between them. line box is selected with left most button. Now. user is
b

¥
Wy ready to draw the lines and link the associated objects. There is only one action
"o
) required to draw the lines. It is to put the mouse in the drawing area and click
oy a p '
o
e the left most button. This creates the links with respect to the relations that
e
-
'S

- 24
B

q
0

B 7m0

2 ’ ¥

ok
i
Q“
X
.
N
‘l‘
.‘"
;‘" objects have. (Relations of the objects have been entered before. while creating
& _
the objects.)
N .
KN . . _ .
L The dashed lines. which represents an association between objects when one
K
0“
W
" or both associated objects are specialized objects. can be drawn with the same
f_' method above. Since there is no library function to draw dashed lines, it is also
'\
‘] . . .
] represented with solid lines. This can be later modified with dashed lines.
) .
Define DB window also provides a pop-up menu. Pop-up menu consists of
"
::: two components: Clear and Ezit. Clear command erases everything in the schema
i
X design area. Ezit command is used to exit the window by saving the schema
o
Y drawn in the schema design area. Before exiting the window a menu is presented
o)
Ky reminding the user that he diagram has been saved with the name which was first
p put when entering the window. This menu also asks whether user wants to
o -
%
a continue his actions to add more objects or edit the objects. If user wants to go
‘o
o
back to the schema, he can get his diagram back by clicking the yes option in the
o
. menu. With no option he can go back to the top level menu by exiting the
ke
i Define DB window.
Wy
‘ o
o D. IMPLEMENTATION
;
§- .
" First of all I would like to explain what modules do, what kind of actions they
y correspond in the process of using the system and what kind of relation exist
T
i
o between them. I would like to also explain the library functions in sequence of
-
. their appearance in the modules. correspondingly in the entire program.
K
N 25
1,
:’V!
‘

W Wl (A T " T ® ¥ ? . S S Ny,
% N P S A P S T PRSI .V
AR M MEI AL RIS Ve AR LR IR CH AN RN

Vs

As it is shown in Figure3. main program calls four functions. Namely.

Defwindow. Manipwindow. Help. Quit. Function Defuindou handles the opening
i of the Define DB window and the creation of the database schema on this
NS window. Manipwindow only opens a blank window to represent the window
ol Manipulate DB. Function Help first introduces the help menu and then creates
y the windows. that explain the required actions to deal with this graphical

database management system. Quit is the function that erases all the windows

N associated with the program.

t

26

'

- Y N) - PN I S NPT 28 ML P N N S S ~> > L
. "7‘5“ “!' .ﬂ-‘\.s.!a .‘ln o] .nA ‘!."q 1. o) A - }' ..‘ -r'- 'J. ny '-‘. oy . Ih(!\-'}l {Cnmiti |) ﬂl I"..l .‘A\i_‘*-“hid

i
Help2

Qu

"

Sy &
(L)

Helpl

Helpwindow

Main
Figure 3.a

Finish

Manipwindow

TouchBoxes

Defwindow
Initialize

27

ihe 1A e * 2 P KNP M) . 3 - . [. !
: ; OO A) ' 0 hgt \
LA LRI S R A AR LR ,J%Vt‘AMWNMﬂw&hsNNNnmeJMMMJMMWM

.
o '“"ft; ""f,.! :'| “Q "';A'(

¥
LAEN o4

-
DrawRectangle2

RefreshBoxes

DrawRectangle

-
Initialize
Background
Figure 3.b

Refresh

SetRefresh

\|
x.‘ﬁ ‘ 28

g n"\.

@ ‘.J,‘,‘t.‘

,n?\.. B l.i'-'\ MO NCE i'!

MoveBox

DrawRectangle2

DeleteBox

DrawRectangle

]
)
S
Rl
-
o
0
(=]
z
o
b
a

3
TouchBoxes
Figure 3.c

DrawLines

RefreshBoxes

DrawBox

IdentifyBox

UseableCoordinates
Draw

‘(l' 29

() —_—

PR

L

[
K . » P TR, r w L - " AT o G N i
Ay ;é*‘e."‘ﬂ }4"""« l'ﬂ'i'u"i"t 2 AR Ve, W0y i A 'ni’s?l '! [°;.§‘:. B ") 'll: b AR Y N a’l\l'l. ‘a!‘q"f\t"b J\, .“'- ."h \l 'l!“h ‘0. ““ Y- ‘ , ‘!

o E. HOW TO PRESENT THE MENU

: The library function PresentMenufmenu.answers) presents all the menus in
H
pr the program. PresentMenu displays a Pop-up menu described by the structure
l‘f‘
pointed to by menu. interacting with the user to obtain a result. The initial state
Lt
b . .
‘[: of the menu is defined by the array of pointers answers. "Answer".
s . .
ift "Attr answer". "Top_Answer" are the examples in the program.
;°§ A menu is defined as a sequence of questions. each question consisting of
Ay
,,:'. various choices. The data structure representing a menu is a tree of structures.
"
At the root of the tree there is a single struet menu structure that consist of three
e . . o . .
o components: label, size. question. label is a pointer to a string that is uysed as the
o |
0 title of the menu. Welecome to DB world, Help. DB Name. OBJ ENTRY,
:::! GENOBJ ENTRY, Attributes are the examples used in the program. The title of
-
KX the merru is centered in the title bar of the menu window.
k
Size indicates the number of questions in the menu. In the program there are
o
.:n' different types of menus asking different number of questions. The top menu has
3
e
:n' only one question consisting of four choices. The HAelp menu also asks one
¢ question consisting of three choices. db_name enter menu which asks the name of
% the database to be dealt with. has only one question. The menu
<,
§
dbname save menu asks two questions: One is the name of the DB to be dealt
:::; o
:,::’ with and the other one is the question that prompts whether the user wants to
o
:u: continue to perform. The menu object entry asks six question. The first one is
3'" the name of the object and the rest is the names of the object that this particular
%
) 30
o
[)
,';‘
o

P A 4 A e T T W Yy " TSN, . O
S0t R PR OO, AR A A o I ACRERORe (O

‘i object has a relation. The menu genob; menu asks 7 questions: the first one ix the
0) .
R
name of the database. the next three question are the names of the relations and
;;6‘
BAR the rest is the names of the subobjects. The menu attribute menu asks 6
i _
':f%' questions that are the names of the attributes of an object.
g:ﬁ" Questions appear in the menu in the order in which they appear in the array.
’. A question structure has four components: type, label. size, choices. type is the
oY
oyt °
type of the question being used in the program. They are SELECT. STRING and
At
(‘:::‘, TOGGLE. SELECT question is one in which the choices are mutually exclusive.
&:' 39
'!'.l . . :
.:f: exactly one of the possible choices may be selected by the user at any time. A
.
il STRING question is one in which the result is a string of text entered by the user.
3
§
) .
,'.' Type TOGGLE has not been used in the program.
b,
label is a pointer to a string which will appear beside the question. Size
Ay
*:::: indicates the number of choices in the question: (For example. the question
\
Y
i top entry has 4 choices.) Or in the case of string questions. the maximum length
IR of the string result.
dhy . .
:‘::' Choice structure has three components: type. label, and shade. type is the
f
o
3 type of the choice which is only label. label is a pointer to a string which will
tiE:v
:'I:: appear in the choice. This is the string at which users point to make a selection.
,:*“:
4
Y shade indicates the background color of the box representing the choice.
Y For each question the corresponding pointer on arrays points to the default
W P p ys p
:-::: value for the question and. on return. to the resuit given by the user. For a select
v:::l
90
question the pointer is to an integer whose value is the position of the selected
'\n
)
03 31
1
%)
v
W

. PO o 0 ')
A Ol N a ' BT ,'h'f‘n‘!‘; -'I& . nh‘,‘i' MY, !‘"’

A L » . 1 " - e s - "y
R OO ORI L XY X (OO N KRt Dt) Hnfi s, -,. Sy

ety

o o A A
fad choice in the choice array for the questioni. For a string question. the pointer is 10
| 4

!

¥ . .

8y an array of characters representing the string.

, '\ The first menu is the top level menu. The name of the menu is top menu.
i

\)

b The title of the menu is "Welcome to DB world. There is only one question to be
A

)

asked. which is one element array with name top entry. The type of the question

i
o
ZQ is SELECT. "Please enter" appears to the left of the question. There are 4
.:‘ - .
B
W choices to be selected and the array top choices includes those four choices. The
';é type of each choice is LABEL. the titles of the choices are the ones mentioned in
4
" : . L
.::':, the top level menu. and the color of the background is white, which is indicated
i.‘.t,
i
) with VT White.
5.5
"y Each choice in the menu corresponds to an integer from 0 to 3. The answers
"%,
; ‘ taken from the menu is held in a variable. The main program continues working
; . until this variable becomes 3 which corresponds to function Quit. In case the
"
¥ ' 3
,2::: variable is zero Defwindow is operated. The window opened first is used as a
‘::!.t
Define DB window by changing its title.
n
N Library function Set WindowTitle(fd.title) handles the problem of changing
)
": the title of the window. The way this function is used as follows:
; Set WindowTitle changes the title of the window associated with a specific file
e
t Y
! .«; descriptor to the null terminated string pointed to by title . Title may have at

most 31 non null characters which are always painted in a standard title font and

P
=

XXX XY

:.f.a-.

e

are automatically centered in the title bar of the window. The next usages of this
window follows the same concept.

ol 32

4
{ .

it
e
A
::: There is another window opened with titie "DATA" which is used to enter 4
Y
the data for the database. This window is opened at the same time that the
RN
j;: Define DB window is opened. The way the rest of the windows are opened in the
“Hh
v .
b program is as follows.
% Open window(z,y,w,h.title) opens a window on the desktop. z indicates the x
)
A coordinate . y indicates the y coordinate of the window’s upper left corner. h
K
Y ° . .
N indicates the height and w indicates the width of the window. title "DATA" is the
R '. a .
f:ﬁ title of the window.
‘.:.
:: ; If the window already exists. by changing the window depth, existing window
L)
v is reused. The library function Change WindowDepth(fd, window,depth) is used for
bt -
:::' this purpose.
i
! Change WindowDepth changes the depth of the window according to its file
\J
¢ o . . .
Y descriptor to the depth given by the user. The number of the windows opened is
]
¥ always counted. Variable decount counts the number of the windows that will be
W
- used recalling the windows. Zero depth of the window indicates that the window
;::'. is the one currently being interacted. When the interaction is comlete the window
) "
l...
ity can be put to the lowest levelof the windows, next window after it comes to the
W : . . o :
ot view and interaction is done with this window. By changing the window depths.
%y
a, every window. that has been opened before can be reused. This method is
"
P followed in the entire program.
28
4 Function Defwindow also utilizes library function "PresentMenu" to ask the
;' 4
b name of the database. The answer is saved in an array. Defwindow calls three
> 33
Y
%
s,

b vee ¥ b3 : x Iy P ‘i h) - o ~ T N R R AT . ~ -.-‘.-.. N et M
RV S NDY ORI, e |’<‘!’»'n‘~.‘a'.‘Q'e""u'l’:'gl! g!!‘ql!‘n"ﬂ-."l!'ﬂ,..\g'!"'. W 55 %E N by < W‘&hﬁ&m\ St o)

- -
S

araiaie A

X

functions: [Initialize. TouchBores. Finist which perform the actions in definition
window. Each function will be detailed later in this chapter. When exiting the
window. another menu prompting the name of the database and with the
question asking whether to continue. is presented. The answer concerning to
continue is kept in a variable econ. Define DB window stays active until no

answer has been received from the menu.

F. MANIPULATION WINDOW

Function Manipwindow does not call any function. Since it is only an
initiative to DB manipulation. by using the library functions. it creates a blank
window that will be used by the manipulation part. This window also uses menus
concerning the name of the database to be dealt with and to save the diagram
created for the database schema and whether to continue the actions in the

window. Window stays active until Ezit command has been received from the

pPop up menu.

G. HELP WINDOWS
Function Help calls two functions: Helpl and Help2. Helpl is used for
opening the window containing the information about how to define the database

and Help? is used for opening the window about the manipulation of the

database. These two windows are also blank windows to be filled out later with.

the information. Since the goal of this study is to use a window for the creation

34

C Y n o a0
3 A o ‘.l. -

0 M 0 W
v it ot RSN

R L OO t
R O MO s '!'o'-

Lol L ab i ol Cah tal tabk o a8 g

of the database schema there has not been paid to much attention to these Help

windows.
\ |8
a3
.-l" H. DESIGN OF THE DEFINITION WINDOW
B
et Initialization of the window_ in done by function Initialize. Refresh.
5
'S,: RefreshBozes and Background are called by this function. Refresh is called as a
B
o
::::: parameter to a library function SetRefresh. Function Refresh also calls
N t."
o BackGround and RefreshBores. What Background and RefreshBozes do will be
c‘l .'
ey
0 explained later.
e
i There are two types of line disciplines: NTTYDISC and TWSDISC. First
-
‘f:l ‘ one is a default line discipline. Second one is is the one for window graphics
25
A discipline. Function Initialize sets the line discipline to TWSDICS.
Ein

» ¢ Another library function SetMouseMode sets the mouse mode for mouse input
3% =

\:': to VT MOUSE DOWN. meaning input is taken when mouse is pressed.

Thickness of all lines are initialized to BOX_LINE. That means. all lines

. E: drawn on the window will have two pixel long width.
>
v\,:
e I. BACKGROUND OF THE DEFINITION WINDOW
4, L
o Background is the function that puts every detail on the window that enables
e
N2
I ."‘: user to use the window. The schema design area. mode boxes that represents the
b 74

actions and type boxes representing objects(rectangles) and lines(associations) are

=)
oLy |

-
ot

put by this function.

g
S

L] l"

e
AL SERRENR

35

'
»
s
P ’

.] S TS B IPAEALISN S TN YV A L LN LR A S I UL I I I T h_'-.‘-_'-._‘q.‘- .t L N I
ISR o ‘_ > 7 J‘J" N _._._r._.\.: I \-._r._.. SN .‘-r_.-".‘-\ ‘,‘e\q-

152 o,

~
2 3
-

U0
]
o

o
§' There are some main tools that Background use The first important one i~
&
it current position pointer. Current position pointer points to any point on the
SN | . . . -
p ’:‘ window. To draw a rectangle border. to paint a rectangle. to draw a line. to
t‘.l
ey

Agheiy paint a string is done first putting this pointer to the upper left corner of the
‘A.‘“ W .

. candidate object and then doing the action. The library function to put the
e

,l': q current position pointer to a certain place is SetPosition. Second important tool
L)

".O' .

\) . . .
e, is the CurrentColor. The current color can be set to VT WHITE or VT BLACK
s or between white and black specifying the numbers corresponding to different
o
N A
o tones of color gray.
el
) By setting the color to a specific color and by putting the current position
.0]

.‘ . . . R .

~4 pointer to a certain point. a rectangle border can be drawn by library function

N
VN
YA
:'. o PaintRectangle Border. a rectangle interior can be painted by
,; PaintRectangleInterior. a line can be drawn by PaintLine. a string can be painted
Lo
L
o . - . ~ . “ . .

N5 by PaintString. Tool SetJustification centers the string relative to current
LY
position pointer.

.l'l

~°
LR Another library function InvertRegion is used for highlighting a specific
: -;\:

Y. : L . .
N region. To indicate that current mode and type. the white areas are inverted to

::\‘:,' black and black areas are inverted to white in the box. Every time one of the

N

-.~ -
s Y boxes is touched the box is inverted to indicate the current action being
ST

&t

performed.
o Refresh Routine. called by library function SetRefresh. gets the current
e sermanent clipping bounds of the window. Clipping bounds means that any
36
X " - \L ¢ > SRR A
AR ‘o’"\t »‘.'q" vl.'.'."l'»'l'..l "\!. R AN \ \ w0 . -"‘. o _ﬁ' fa.{lh.s.n._hmt‘d.{.&’.}iz {x

2 -
:t':
ot
Ly
’T'c
:';::' object or part of an object drawn outside of this area is not displayved. First time
LN
¥ ;'I
o window is opened clipping bounds covers the entire window. This clipping
PR .
:e::? bounds can be set to a specific area of the window.
l'Q
Q".
::::: ‘ Library function GetPermanentClipping gets x and y coordinates and the
8
N width and height of the window so when function Background is called. the
0
A
. |‘|
3::' current position pointer is set to the upper left corner of the window. meaning
‘::',‘ .
ot}
that x and y coordinates are set to zero. Upper left corner of the window is used
e : : , :
K as a reference point when using the rest of the window. instead the upper left
!
:o:'.' corner of the screen.
2 MY
4% Refresh Routine calls function Background and RefreshBozes. What
SN
™ .
> Background does was explained before. What RefreshBozes does as follows.
zh
o J. UPDATE THE RECTANGLES
4% -
-'{‘ : RefreshBozres gets the current permanent clipping bounds and restricts this
e
) E]
kY,
area to the schema design area. This way the only area which can be drawn is
KX : : . . : .
e.:-:. the schema design are. First. the area is painted to white and then. if there is.
\
B
o the rectangles are drawn.
N
o The features of Rectangles drawn in this area is kept in an array of records
;
) . . .
WY called as "rectangle". x.y coordinates and width and height of the rectangle. the
o :
Lx . . el - .
name of the rectangle. the relation names of this rectangle. if it is a genobj. the
B N .
¢ 0 subobject names of the rectangle are kept in this structure. Also whether it has
iC)'»
:0 '
P
e
WX 37

“ n" 8 T L A e e O T e R S LT IS) T T S N >, W, Y
e LN - ; o “a, LS R ” ". < ‘\ ,ﬂ. -_‘n.#

e 2 - P . kS EPPREYPIEPT WY ¥ ST 3 YR Ak eag af ab . au . m . P o ah . an ol .ad AR iah)af . - - TRy
F".

NN L L .
N got a circle. representing disjunctive relation. in it and whether it is a rectangie
X
' representing a generalized object. is kept in this structure.
‘,::0 ’
ig;. Every time RefreshBozes is called the rectangles featuring the information on
\
i objects are drawn on the schema design area. one by one. until the rectangles are
e finished.
. .
¥
W
f',, K. USE OF THE MOUSE FO CREATE AN OBJECT
What TouchBozes does is to get the input from the mouse and do the
Y
".
;,; appropriate action. In case the right most button is pressed and released it redoes
!
R
the last action performed.
["'.
o If left most button is pushed. the actions are different depending on the place
N
“\." . . 0 . . .
""' of the mouse. The information about where mouse is put is received by function

UseableCoordinates. If the mouse is in the schema design area it does the action

-
LR ARE

: depending on which mode is being used. If Draw mode is being used. a rectangle
)
v
can be drawn: if mode is being used. a rectangle can be moved to another place in

) N the schema design area: if Delete mode is being used. it deletes the existing
-. J'":
» rectangle pointed by the mouse.
_:-: In case the Draw mode is selected. 4 types of action can be done depending on

~I
~

o

s current type. If current type is OBJ TYPE. meaning that OBJECT box is
B > -

M
B/

selected. then function Drau oz is called which draws a box in the schema dosign
area. In case GEN OBJ type. the same action is done. But function DrawBor

separates objects and generalized object depending on the boolean variabie

oy rres > 4 - - i g - b g Y R R O T g O L N E LW U W R T TR TR ey g ey

genbool. In Drauw mode. the lines and dashed lines can aiso be drawn. If the

. circlebox is touched. boolean cirebool. in the structure rectangle. becomes TRUL

and the rectangle is drawn with a circle in it.

‘.1-‘;!
60
- In case the middle mouse is pushed. a pop up menu appears by library
o function DisplayPopup. it gives the capability to the user to exit the window or to
0
iy clear the schema design area. If the clear commana is chosen the action is to
N
ks
) paint the drawing area to white. if erit command is chosen, then action is to exit
B
N the window and save the diagram.
-‘\
"‘:
3 N
W L. DRAW A REGULAR OR NESTED RECTANGLE
KO
.7 Functions DrawRectangle and DrawRectangle? are called by functions
-’:-
o .
NS RefreshBozes. DrawBoz. and MoveBoz. As 1 explained above. RefreshBozes
- draws all the rectangles in the array of records "rectangle" by calling these two
e)
.3 functions. If the rectangle represents an aggregate object. then DrawRectangle is
.
' »
W el . . .
‘ called. or if it is a generalized object. then DrawRectangle? is called. Both
L3 W)
ﬁ-..’, functions take one rectangle at a time and draw the rectangle depending on the
& |
QJ information it contains. For example. if the eircboolis TRUE than rectangle is
o drawn with a circle in it.
).~ At the time when DrawBoz is called by TouchBozres. to draw the boxes.
1:'
L function DrawBozr calls these functions. above. by sending the a record with every
N
ﬁ‘- information in it. If MoveBoz calls these two functions. the structure element
3 5':
K2 '
¥, O
S 39
' 4
4
bW
X
da

'y
>

which is being moved. is sent to these functions for the next place of the 1

, rectangle.

':(t‘:

:::'; M. DETERMINE WHERE CURRENTLY THE MOUSE IS

0'0‘1

'

:';'«‘;4_ Function UseableCoordinates determines where currently the mouse is. If it is
;i‘s the schema design area, then drawing, moving, or deleting can be done. If it is in
I':

X0)
e::: the type bores area. then # sets the types to OBJECT. GENOBJ. LINE or
te¥ .

DASHEDLINE by inverting their boxes. If the mouse is inside the circle box then

'f\

2 it sets the boolean variable of the record to TRUE so when drawing the rectangle
2

z::v it draws with a circle in it. If it is put inside the mode boxes. it sets the mode to
b, one of three modes, and inverts its box.
Pos

.*‘:. N. IDENTIFY A RECTANGLE(OBJECT)

"' Function IdentifyBoz is called by functions MoveBor and DeleteBoz. When
I
; 'i moving or deleting the box. the mouse is put into the rectangle which is to be
i

a moved or deleted. What IdentifyBoz does is that it identifies which record of the
e

A
K ‘; structure "rectangle" that the rectangle is. and returns the ID = of the record.

!"
e
O. MOVE A RECTANGLE(OBJECT)

?‘{
:": Function MoveBoz gets the ID = of the rectangle to be moved and tracks the
Bl
:{'g action of the mouse. When the mouse is released the data about the new place of

’ i

T
-

the rectangle is put as a last record of the arrayv and the previous information is

20

R 4

. 40

s »
-*g' o o W7 N . O T T e et Mt
B 9,"*,‘," ‘4- 3,4. .\-. kS .(*. \,\',..".

e‘: deleted. By calling RefreshBoxes. the array of records "rectangle" is redrawn with
eéﬁg
' the new changes in it.
%
3 P. DELETE A RECTANGLE(OBJECT)
b
i
N Function DeleteBoz also calls IdentifyBoz to get the ID # of the rectangle to
i
:ta:k be deleted. And deletes the rectangle. The number of rectangles is decreased by
O3
wy .
:f::: one. By calling RefreshBozes the place of the rectangle that is already deleted is
M
- painted to white and the entire array is redrawn.
R
oy
Bit)
e Q. CREATE A RECTANGLE(OBJECT)
’:,l;
When function DrawBoz is called. first. the number of the rectangles is
oY
.‘ 1 '
‘f_'f increased then the x and y coordinates of the mouse is put to record’s x and y
BEA
¥ . coordinates. The data about the name of the rectangle{object). relations of the
Q’.‘
“:fé object and. if there is. subobjects of the object taken from the menu are put into
l..‘l
A) .
::.l: the last element added to the array. If the right most button is pushed. then last
)N
Ve element of the array will be redrawn. The width and the height of the last
¥
,‘
;. element is put to the added elements width and height part. If the left most
0\
3 b
- button is pushed and the mouse is moved while it is being pushed. library
.“'
¥
" function TrackRubberBoz tracks the lower right corner of the rectangle. returning
)
%N
A28 the width and the height of the new rectangle.
iy ‘Q The movement of the mouse is considered positive from left to right and from
-
;‘: . up to down. If the rectangle is moved opposite to those above. then some d
0l
)
v arrangement is done concerning to change the negative values.
o
L 41
i
U
)
5

N . w

AN, N IS . ~ Ay A 2 A ¥ w Y M E 0 AT R A R it RS AR
!s.l"‘l" 'i.\.) T o "‘> S OMAUA AT .“'.l..t‘:‘l‘h\.i; % L‘k. X '9- -s‘h ..o., o 2 N S,

(R - - «
L33 A \ () > 0 " "y, . -
¥ L. 1 ‘] A
& OSARNGES, L G nﬁ*‘h AN »‘:\k‘g N |"; o, .0'.‘.0‘ CLAK O o o ,.' ,.’ WA Ko,)

R. LINK-ASSOCIATED OBJECTS WITH SOLID LINES

Function Drawlines takes the first record of the array and compares the
relation names of this record Wit}.l the rest of the object names. If there is a match
it calls the function Draw to draw a line between them by sending the ID #'s of
the matched elements and then takes the next element and continues until the

elements of the array finishes.

S. LINK ASSOCIATED OBJECTS WITH DASHED LINES
Since the dashed lines in the schema represent a relation between an object

and a subobject of an general object it compares the names of the relations and

the names of the subobjects and calls the same function Draw to draw a solid line..

Because there is no library function to draw a dashed line.

Fungtion Draw takes the ID #'s of two object, which there is a relation
between them. and draws a line between them depending on the position of two
rectangles. If a rectangle is below the other rectangle. it draws a line from the
middle of the bottom line to the middle of the upper line of the other rectangle.

If they are almost the same level, it draws a line from right side of one rectangle

to the left side of the other rectangle.

42

LA KOOI

LAt

3
.tﬁ}

PSRN
4

RO
Ll

V1. CONCLUDING REMARKS

The entire thesis has been designated to the implementation of GLAD’s data
definition language. The program that is capable of having the user define a
database schema. has been coded in programming language C. The system that
the implementation was achieved on has a C language graphics library. This
library enabled us to write the program and utilize the graphics capability of the
system.

Implementation of the program has been explained in Chapter 5. The usage
of the library functions and some of the important points of the library functions
have been explained, as well. The entire library can be found in the manual of
"isiv". This manual provides information on how to use the system. how to write
graphics programs by using the library functions. This manual also provides some
example programs that show how the library functions can be used to write
graphics programs.

Chapter 1 explains the major components of a database management system
which they are data definition language and data manipulation language. Some
query languages have been used for this purpose. These languages brought some
problems with them. The difficulties using these languages forced researchers to

take advantage of the new graphics capabilities of the computers. Chapter 2

43

) v ~n o xx- - e . .
LA L] > ot 7y ™ i H
D R Y I et NP S ’h‘f’*’o‘-h.ﬁ L8000 Lo s RO LA MMM T, D R L L TS Mt lﬁ.‘ﬁ"‘

|

ay el b Mt st g Aoy 30 4% (N " 5B ey b g Rt M . . N . . . " N 3 ‘ . " "
,‘.}._' uv.‘)'- -L. N.».!. -] AR R L, * a8 A AN AT W .l.\.\ -‘.h.\'.nxml~ N Re¥ AT B PR Py Pl LA iy ..)‘.. _J‘Ju

explains the difficulties in using the query languages and prior researches to 2
Il overcome those difficulties.

W GLAD’s approach to the issue is to use a diagram representing the database
schema as an interface to the database. Over the past vears. database schema has
been used to explain the database concepts. But, it has not been used in
accessing the databases. By visualizing the database concepts. user can
understand the underlying co'ncepts of the database.

N Implementation of the GLAD's data definition language can be considered as
a prototype. It is not complete, in terms of representing the entire data definition
language. But. it gives an idea. how computer graphics can be utilized to access

i the database. specifically to define a database. When it is complete. I believe. it

" - will be rather useful to the database users.

3::.g 44
'.. ‘

L IRLTRIEY

~pe

- g e -warw TeTTweer A avs e ook g Lz ol s ooa i o ah WU O oW T —v—T

APPENDIX - PROGRAM LISTING 4

/” this program is written for the data definition language

‘; of GLAD(Graphical Language in Accessing Data bases).”/

o #include <vt.h>

)

x5 #include <tools.h>]

#include <bitmap.h>

:::: #define MAX RECTANGLE 100 /* max rect.(objects) in the schema area */

o #define SPACE 10

. #define BOX LINE 2 /* max width of all the lines */

2 #define BOX WIDTH 50

s ; #define BOX_HEIGHT 50

’: #define NTYPES 4

l‘.‘

e #define TYPE BOX X SPACE /* x coord. of type boxes */

i #define TYPE BOX Y SPACE /* y coord. of type boxes */

,; :{ /* width and height of the type boxes */

»~ #define TYPE BOX W (NTYPES*2*BOX WIDTH)

‘;‘:E #define TYPE BOX H BOX HEIGHT

e] /* x and y coordinates of the circle box */

! #define CIRC BOX X (TYPE BOX X+TYPE BOX W + SPACE)

R #define CIRC_BOX_Y SPACE

» #define CIRC BOX W BOX WIDTH /* width of the circle box */
#define CIRC BOX H BOX HEIGHT /* height of the circle box */

g #define OBJECT TYPE 4

Yy #define GENOBJ TYPE 5

" 4define LINE_TYPE 6

#define DOTLINE TYPE 7

o

::: #define NMODE 3

i§: /* x and y coordinates of the mode boxes */

: #define MODE BOX X (TYPE BOX X+TYPE BOX W+100

+BOX WIDTH)

- #define MODE BOX Y SPACE

: /” width and height of the mode boxes */]

) #define MODE BOX W (NMODE*2"BOX WIDTH)

- #define MODE BOX H BOX HEIGHT

B

R

g 45

.l
l"
i“
Bl ~ .
DAONOBOAOAIAOH RO oY ") o s
S A L I ,‘_3’), ‘9““’, ’!"" A | ‘!.\A[.‘ .‘.l.‘.. '.' . -.‘(\ l.\ -

N

™
'y

e
AN ':l.

kA a Ty " [. - . e o
.z‘ "’ .'0-'00 n | ‘.“’.‘"'; . » Q,O'j." " “.‘.‘ hh Ju ?h'. Q‘,'I‘!‘l‘!‘h‘." .h- i Nf -\f M

=define DRAW MODE 0
=define MOVE MODE 1
=define DELETE_MODE 2

/" x and y coordinates of the schema design area */
#define DRAW BOX X (TYPE BOX X))
=define DRAW BOX Y (TYPE _ “BOX _Y+TYPE BOX H+SPACE)

struct wstate istate: /* for the current state of the window */
struct vtseq input: /* for the input being received from the mouse */

struct rectangle { /™ for the data on the rectangles(objects) */
short x; /* x coord. of the rectangle(object) */
short y: /* y coord. of the rectangle(object) */
short w: /* width of the rectangle(object) */
short h: /* height of the rectangle(object) */

char name{20]; /* name of the object written in the rectangle */
/™ relation names of the object */

char rell[20]:

char rel2[20}:

char rel3(20}:

char subobj1{20];: /* subobject names of the object,if the object™/

"char subobj2{20]; /* is an generalized object. */
char subobj3{20]:
~bool genbool: /* TRUE for a generalized object "/

bool circbool: /* TRUE for a rectangle with circle in it */
} dlist{MAX RECTANGLE]; /* array of rectangles(objects) */

/™ for the width and height of the drawing area depending on
the size of the window */
shortt DRAW BOX W.DRAW BOX H:
short npoints =-1; /* keeps track of the number of rectangles */
short current mode = DRAW MODE:
short current type = OBJECT TYPE:
short repeat =0 /* for a rectangle to be redrawn * /

/* top level menu that appears when first DB window created and after
finishing to use one of the top level windows. */

/” this is an array choices. each element of the array having three components:
type of the choice which they are LABEL:label of the choice which appears
in the box and background color of the choice which they are all VT White.
meaning that the background color of the labels are white. */

struct choice top choices[] = {

46

f

» \ .o."-O c !

Loty

{LABEL. " Define DB ". \'T White}.

{LABEL. " Manipulate DB". VT White}.
{LABEL. " HELP . VT White).
{LABEL. " QUIT " VT White} }:

/* this is an array of questions.each element having four components :
type of the question is SELECT .meaning that exactly one of the possible
choices may be selected by the user at any time.second component is the
label of the question. there are 4 choices to present and the name of
the array of the choices is the last one */

struct question top entry[] = {

{SELECT. "Please Enter". 4. top choices}

}:

/* this structure consists of three components : title of the menu window,
1 questions to be asked and the name of the array of the questions. */
struct menu top menu = {
"Welcome to DB World". 1, top entry
}:

/* this is an array of choices for the question help entry.each element of the
array having three components: type of the choice which they are LABEL,the
title of the choice.and the background color of the choice. */

struct choice help choices[] = {

{LABEL. " DB definition ", VT White},
{LABEL. " DB manipulation ". VT _ White}.
{LABEL. " QUIT ", VT White}

}:

/* this is an array of questions for help menu.this array has only one element
in it and this element has three components: type of the question(SELECT),
label of the question,number of the choices(3).and the name of the array
of the choices. */

struct question help entry[] = {

{SELECT. "Description ". 3, help choices}

}:

/* this structure has three components : title of the menu window,

1 questions to be asked and the name of the array of the questions. */
struct menu help menu = {
"HELP". 1, help enury

}:

47

bl arh maa o CadaSd ach sue mah mie ora Ao 4

Vi
S
K
l':':A .
e /" this is an array of questions for the menu "dbname enter menu".it has only
one element in it and this element consists of four components : the first
. p
‘*:::r component STRING is the type of the choice which is a question in which :
(AN . . .
:4:0: the result is a string of text entered by the user.second one is the label
i;" for the string.25 indicates the max. number of letters alloved for the
M string also 0 indicates that there is not an array of choices for string. */
struct question name enter(| = {
Y {STRING, "Please Enter Your DB Name", 25.0}.
;"c:: }
i |
;'l'
iy /* this menu asks the name of the data base.it has three components:the title
of the window is "DB Narmse".there is only one question to be asked.the name
‘. . .
;y:a: of the array of the questions is name enter.
::::‘ struct menu dbname enter menu = {
Kok "DB Name". 1. name enter
DED }: -
a‘ﬂ
‘.: X /* this is an array of choices for the second question of base name */
) struct choice cont_choices(] = {
A {LABEL. "yes". VT White}.
\ {LABEL. "no". VT White} . .
" -
A
0". ‘
(T
. 2 .
:5‘: /* this1s an array of the questions for menu "dbname save menu" .first element
¥ . . . — —-—
it is a string holding the name of the data base entered by the user when menu
"dbname enter menu" was presented.it has four components:STRING.type of
b yp
X - —
'::" the question:label of the question:25.max number of letters in the string:
. . . - . . .
o:. O.indicating that there is not an array questions for the string.
c::.: second element of the array has four components : SELECT, type of the
Wy uestion:label of the question:2.number of the choices and the name
., q q
of the array of the choices. */
w:'. struct question base name(] = {
?::‘ {STRING, "Your DB is saved with name",25.0}.
e {SELECT. "Continue ?".2. cont choices}
!:J'v. }Z
:::l,' /* this structure has three components: the title of the menu window is
::. "DB name":there are 2 questions to be asked and the array of questions ~/
,::..':. struct menu dbname save menu = {
L "DB name". 2. base name
N, b
M-
,::z
Q“'
!“’. 48
fal:'

P I R 2 LIRS ST PR Y ST S T et At et ara
/ .t (. MR TR U R I L . N N %
ALS : ', AL -!!-‘ " q"..q‘ . $!.. .7~7.~ N _~ ..; 5- LY .‘{_1 " SRR -

LRy
° -

-) 1 h i,
A A AN :!th. Y, al ‘,h %A K

:
F

el
s

ea S

"o\

b
A ¢ “‘. tt.fk

" this is an array of questions for the menu "object entry" first element of
the array asks the name of the object.the rest of the array ask the names
of the other object that this object has a relation.the first components
are the type of question tobe asked.second ones are the labels for questions
20 is the max number of letters in the string. -/

struct question obj entry[] =

{STRING, "Enter Your Object Name", 20, 0}.
{STRING. "Enter The Relations ". 20. 0}.

{STRING, " " 20.0}.
{STRING. " . " 20,0}
{STRING. " " 20.0}.
{STRING. " : " 20.0)

}:

/* this menu has three components : "OBJECT ENTRY" is the title of the
menu window.there are 6 questions to be asked.the array which is
holding the questions is obj entry. */ */
struct menu object entry = {
"OBJECT ENTRY". 6. obj entry
}:

/* this is an array of questions for the menu "genobj menu" .first question asks
the name of the general object.from second to fourth ask the name of the
otherobject that this object has relation.the rest of the questions are
the subobject names of the general object. ™/

struct question genobj entry[] =

{STRING. "Enter Gen. Object name". 20. 0}.
{STRING. "Enter The Relations ", 20. 0}.

{STRING. " " 20.0).
{STRING. " ", 20.0}.
{STRING. "Enter Sub Objects ". 20.0}.
{STRING, " ", 20.0}.
{STRING, " ". 20,0}

}:

/* this structure presents a menu for a general object. first component of the
menu is the title of the menu window. second one is the number questions
appearing in the menu. third one is the array holding the questions */

struct menu genobj menu = {

"GENOBJ ENTRY". 7, genobj entry

}:

this is an array of questions for the menu "atiribute memu". questions
ask the attributes of an aggregate object. - '
struct question attrib_entryfj =
{STRING. "Enter The Attributes ". 20. 0}.
{STRING. . 20.0}.
{STRING. . 20.0}.
{STRING. . 20.0}.
{STRING. . 20, 0}.
{STRING. . 20,0}

b

/* this structure presents a menu for the attributes of an aggregate
object. the name of the menu window is "ATTRIBUTES" there are 6 attribute
names to be asked and the questions is being held in the array
attrib_entry */
struct menu attribute menu = {
"ATTRIBUTES". 6, attrib_entry
}:

top = 0: /* variable holding top level answer:initialized to
zero indicating that the first one of the
choices(DB Definition) is the default choice */

help = (: /” variable holding the answer from help menu:

= initialized to zero indicating that the first one of
the choices(Describe DB def.) is the default choice*/
= 0: /* variable holding the answer from dbname save menu:

initialized to zero indicating that the first -
one of the choices(yes) is the default choice */

name(25] =" ": /* variable holding the name of the data base */
dummy|25’ = " ": /* variable to clear the name in the
array "name" "/
*top_answer{] = {&top}: /" answer from the top level menu */
*help answer|] = {&help}: /” answer from the help menu "/
“dbname answer{] = {(int iname.&con}: /" take the name of the data */
/* base and answer as to continue to deal with it */

objname([20]= " "
ansl20] =""
ans2(20] =""
ans3{20] ="":
ans4(20] =""

i
[

. T O] . M P R TorCP T AR P ™ A AP * P 8 R b P R A T e AT R .
SRR G e e SN N s W Rt i i St Che p,.c o P o Le Mo i "" o Lh S HIAG ‘M ¥ty 'h"l:‘;‘h o

char ans320 ="":
char ans6{20: "
char ans7[20

char ans8(20] ="":
char ans9{20] =""
char ansl0[20] =" ":

char att1{20] =" ";
char att2[20] ="";
char att3[20] =" ";
char att4[20] =" ™
char att5[20] =" ":
char att6[20] =" ";

/™ holds the object name. the relation names and the subobject names of
a general object. */
int "answer{] = {
(int*)objname,(int*)ans1,(int*)ans2.
(int*)ans3. (int*)ans4.(int*)ans5,
(int*)ans6, (int™)ans7,(int*)ans8,
(int*)ans9, (int*)ansl0

}:

/™ holds the attirbute names of an aggregate object */
int *attr_answer(] = {
(int*)attl (int*)att2,(int*)att3.
(int*)att4,(int*)att5,(int*)att6

int fd:

int f=1:

int count:

int dcount; /* window number of the definition window */

int mcount: /* window number of the manipulation window */

int hlcount: /* window number of the describe definition window */

int h2count: /* window number of the describe manipulation window */

bool boolcirc = FALSE; /* whether the circle box has been touched */
bool touchbool = FALSE:

short option: /" for the pop-up menu */
short defwinum = 0: /™ to find out if definition window already exists */
short manwinum = 0: /* to find out if manip. window already exists */

short helpdefnum = 0: /* to find out if describe defin. window exists */

51

short helpmannum = 0: /° 1o find out if describe manip. window exists *’

short blackobj = 0: /" to invert one of the type boxes *
: main()
8- {
Ve count = 2;
:': /™ continue until variable top becomes 3.representing "Quit" */
e while (top '= 3) {
v.~.
s /* present the top level menu and get the answer */
’ PresentMenu(&top menu.top answer):
'ﬁ" _ . —
Y

/* if the answer.from the menu,is "DB Definition" */

s if (top == 0) {
o
" ,’: /* change the window title to "DB Definition" */
N SetWindowTitle(f."DB Definition"):
LR

if (defwinum == 0) {

P

..,/.

.
~ Ny
-

/" open a window for the data entry */

2
R OpenWindow(550.600.678.332."DATA "):
KX ~count = count + 1:
' ~ dcount = count:
,:,::: Defwindow():
:fz‘! } /* end lf */
w else {
:":’. /" get the "DB Definition" window by changing the window depth */
¥ ChangeWindowDepth(f.dcount.0):
¥ .
B Defwindow():
W } /* end else */
i{;:-
\ " end if *
::-::, t/ /
"
E:::- /* if the answer.from the menu.is "DB Manipulation” */
~ if (top == 1) {
J /' if "DB Manipulation" window does not exist vet then open the
:I:I". window and call the manipwindow */
:':.., if (manwinum == 0) {
i OpenWindow(118.117.878.432."DB Manipulation"}:
'.('
AL 52
Y.
e
]

DAL MLAAOA NN J Y) OC 8 Py Lo Cnt , W, o "1"‘"—"‘",".-'-:'.'7 YA N T S AR
et "«- ‘@Iv.ﬁlv‘.(,"h‘h‘.h..?; ’hl 'ih" '!“.'a‘." ..ﬂ) gy ‘? ‘f * %Y, .!h N “J.' e ’” ot F‘ " o lf' 'r" ’\h " “’ c)\'/ ol) i HCH S

o)
Yy,
Kt
i:"

d
:' count = count — l: A
:: ' mcount = count:

‘ Manipwindow():
W } /7 end if */
N
. /* if the "DB Manipulation" window already exists then get the
:.’ window by changing the window depth. /

else {
B ChangeWindowDepth(f.mcount.0);
‘o Manipwindow():
e } /* end else */
[P
}

.

) /™ if the "Help" option is selected */
i) if (top == 2)
¥

K .

Helpwindow():

} /7 end while */
»:

oS Quit():

Y

2 ")

. } /7 end main */
& N
K
-
» Quit()
{

oy GetWindowState(f.&istate):
‘o) fd = -1:
50 SetWindowState(f.&istate):
" ' } /* end function */
T _
e Defwindow()
"_:: /” this function is about "DB Defintion" window */
B, "
= /* get the current state of the window */
25 GetWindowState(f.&istate);
b

e defwinum = defwinum + 1:

/* ask the name of the data base and get the answer '/

33

. D T SRR W A Tl Wt T N S
.\\.J_t.l\..,\.__.,_.'_‘._. \.. 'v(‘*"" N

N .‘-

\. L] -\
Y & \ ﬁ ‘& \ \J(Jﬁ & ~ x). " \f , J J\‘ ,.’ , i / . f >

&
Fyoaom

e 7
0.%0.%y

‘PresentMenu(&dbname _enter menu.dbname answer):

/* continue until "no" answer has been received '/
while (con !=1) {

/* initializa the window */

Initialize();

/* do the actual creation of the data base schema */
TouchBoxes();

/* close the window */-
Finish():

/* present the name of the data base and ask whether to continue */
PresentMenu(&dbname save menu.dbname answer):

SetWindowTitle(f."DATABASE");
} /* end while */

/™ if "no" answer is received then change the window depth */

if (con == 1) {
ChangeWindowDepth({f,2.0): .
con = 0;

} /*7end if */

/* clear the data base name in the array "name" for another entry */
copy(dummy.name):
} /™ end function */

Manipwindow()
/* this function handles the "DB Manipulation" window.only a blank window is
created for the completeness of the GLAD */

manwinum = manwinum + 1:

) .
3 E: /" get the current state of the window */
‘:::'b . GetWindowState(f.&istate);
)
p3
. /* ask the name of the data base and get the answer */
e
Y 54
Y%,
tnf“v
*Ii.")

AN ‘ DR KD ‘ i l

QS AT o S

ISOARAOAAN Lo 000 ' MRS e O N
s O ,“t 3 “v‘:.*"b NIy .fx“.‘h‘!’q‘”a"h‘!i’“".‘.‘. "‘l"-,“! Y .). oty N "

PresentMenu(&dbname enter menu.dbname answer):
option = -1:

/” continue until "exit" command is received cr "no" option is selected '/
N do

&6 .

" {

L ¥ option = DisplayPopUp(l."menu EXIT SAVE ")-1;

. /* if "exit"command is received from the pop-up menu */

00 if (option == 0) {

Wi ChangeWindowDepth(f.2.0);

. } -

"o /* if "save"command" is received from the pop-up menu.then present
:,'l: the name of the data base currently being dealt with and get
$‘; the answer as to continue to work "/

5'.’:.:! else if (option == 1) {

nt PresentMenu(&dbname save menu.dbname answer):

o)

2"‘.. -

av:"::' }

)

"0'.‘. while (con '= 1 && option = 0):

I e

" ’ [* of "no" answer is received then change the window depth */
e if (coh == 1) {

:';'! ChangeWindowDepth(f,2.0):

oy con = 0:

} /™ end if */
A /* clear the data base name in the array "name" for another entry */

copy(dummy.name);
o } /* end function */

§ L]
§§ Helpwindow()

. {
2y /" ask what kind of information the user wants and get the answer */
r PresentMenu(&help menu.help answer):

:k‘ /* continue until "Quit" option is received. */
: while (help !=2) {

at, 55

X] Y D ' 9 AN WY S AP IO A A e K Y
T A D O e e L O S SR S S A A SR M AR ¢ MBS AN hraended e e

t"?
% /" if "Describe DB Defintion" is selected
;f if (help ==0) {
‘ /* if the window does not exist yet.then open the window *
i if (helpdefnum == 0) {
r:: OpenWindow(118,117.878.432."DESCRIBE DB DEFINITION"}:
::: count = count + 1;
R ~ hlcount = count;
Help1():

?::. } /* end if */
N

\
:ES /* if the window already exists.the change the window depth and
by get the window */

v else {
:‘,: ChangeWindowDepth(f.hlcount,0):
.o;: Help1():
g } /* end else */
e } /* end if */
e /™ if "Describe DB manipulation " is selected */
;‘ 1 else if (help == 1) { '
3
%". /* if the window does not exist yet.then open the window */

if (helpmannum == 0) { .
;’;'f ~ OpenWindow(118,117,878,432,"DESCRIBE DB MANIPULATION"):
dy count = count + 1;
;:{ h2count = count;
« Help2();
y } /* end if */
)
;;" /* if the window already exists.the change the window depth and
g get the window */
" else {
ChangeWindowDepth(f.h2count,0):

:‘ Help2():
, } /* end else */
W
o } /* end else */
b * : *
7 } /” end while */
i, help = 0:
we } /* end function */
2 56
W%
»

- 1 « -_1 -_.... -------- - . v_- -,._‘- L 9 ~.'-\
“~ Yoy e ‘r_,.'\.'*.\\\, _,\‘,',\ ,‘w‘ }"

'u" '-"-. 1."\-";4‘-"“ N
....... Il e

i,

Helpl()

{

helpdefnum = helpdefnum + 1:
option = -1;

/* display the window until "exit"command is
received from the pop-up menu*/
while (option '= 0) {
option = DisplayPopUp(1.,"menu EXIT ")-1;
} /* end while */

/* if the "exit" command is received, then change

the window depth and present the "Help" menu */
ChangeWindowDepth(f.2,0):
PresentMenu(&help _menu.help answer):

} /* end function */

Help2()

{

helpmannum = helpmannum + 1;
option = -1;
/* display the window until "exit"command is
received from the pop-up menu */
while (option '=0) {
option = DisplayPopUp(1."menu EXIT ")-1:
}

/* if the "exit" command is received. then change the window depth and
present the "Help" menu */

ChangeWindowDepth(f.2,0);

PresentMenu(&help menu.help answer):

} /* end function */

copy(sl.s2)
char s1{],s2{];

{

57

.
¢
]
’

i
3
.
1

'

i A '0,2[:.1‘10.;”

l.~

mt i

1=0:
while (‘(52[i] = slfi]) =")
+ 41

} /* end function */

Initialize()
{

U »

(1

void Refresh(),RefreshBoxes():

/* get the current state of the window */
GetWindowState(f,&istate);

/* block asynchronous refresh and adjust for the window */
BlockRefreshAdjust(1):

/* specify and identifier and a refresh routine for the window */
SetRefresh(f,0,Refresh);

/* set the line discipline of the window to graphics line discipline */
SetLineDisc(f, TWSDISC);

/* allocate a buffer size of 1024 for the window */
SetBuf(f.1024);

/* inform the application when the mouse button is released */
SetMouseMode(f,VT MOUSE DOWN):

/™ set the thickness of the lines and objects borders
to BOX LINE(=2)
SetThickness(f.BOX LINE):

/* adjust the width and height of the schema design area
according to the with and height of the window */
DRAW BOX W = istate.width- DRAW BOX X - (SPACE*2):
DRAW BOX H = istate.height- DRAW BO)\ - (SPACE~2):
Background();
RefreshBoxes(DRAW BOX X-BOX LINE.DRAW BOX Y-BOX LINE.
RAW BOX W+(2”BOX LI\IE) DRAW BO\ H+(2 BOX LI‘\IE))

58

 COOTOC OO O, A%t w5 V0 e Y
: 5-“!.‘ ‘-",'.'_h "- A Gt‘ell.a K] 4,"'-) 1 Q.: 09&‘ .Q.‘. - > Aol CHN K

} /' end function */

Background|()

{

short i:

/* set the current position pointer to the upperleft corner of the window */
SetPosition(f,0,0);

/*set the current foreground color to white */
SetColor(f,VT White);

/™ paint the entire window to white */
PaintRectangleInterior(f.istate.width.istate.height):
SetPosition(f.TYPE BOX X,TYPE BOX Y});
PaintRectanglelnterior(f. TYPE BOX W,TYPE BOX H):

SetPosition(f.CIRC BOX X.CIRC BOX Y);
SetColor(f,VT White);
PaintRectanglelnterior(f. BOX WIDTH.BOX HEIGHT);

/*set the current foreground color to black */
SetCelor(f,VT Black);

/* set current position pointer to the upperleft corner of the type boxes */
SetPosition(f. TYPE BOX X.TYPE BOX Y):

/* draw the border of type boxes */
PaintRectangleBorder(f,TYPE_BOX~W.TYPE_BOX_H);

/* draw the vertical lines to separate different types */

for (i=(TYPE BOX X + 2*BOX WIDTH);
i<(TYPE BOX X+TYPE BOX W):i+=2"BOX WIDTH) {
SetPosition(f.i.TYPE BOX Y):
PaintLine(f.0.BOX HEIGHT):

} /* end for */

/” center the text relative to position pointer */
SetJustification(f.VT CEN" ER);

/* set current position pointer in the middle of the object type box */

59

v

AN 0 oy o ' R TS, - 0
?'3‘)5.'..5"5":‘.'.‘“.’:‘1!:2. QOO T Ut o!*'v"'af":fi'oﬁ Rl WONY LA X G O WA

ek Al B v'vv-v------1

» - o)
B TR TR RX Y, m

i

o .,
..‘-

-

._‘
i
-

SetPosition(f.i TYPE BOX X+BOX WIDTH).
(TYPE BOX Y+(TYPE BOX H/2))):

/™ draw the text "OBJECT" in the first box */
PaintString(f.VT STREND."OBJECT"}):

/* set current position pointer into the genobj type box */
SetPosition(f,(TYPE BOX X+(2*BOX WIDTH+6)),(TYPE BOX Y+35));

/* draw the second rectangle in the genobj type box */
PaintRectangleBorder(f, ("‘BO\ WIDTH-12),(BOX HEIGHT- 10))

/* set current position pointer into the center of the genobj type box */
SetPosition(f,(TYPE BOX X+(3*BOX WIDTH)).
(TYPE _ BOX _Y+(TYPE _BOX H/2))):

/" draw the text "GENOBJ" in the second box */
PaintString(f.VT _STREND,"GENOBJ"):

/™ set current position pointer to the upperleft corner of the circle box */
SetPosition(f,CIRC_BOX X.CIRC BOX Y);

/™ draw the rectangle of circle box */
PaintRectangleBorder(f.CIRC _BOX_W,CIRC_BOX_H);

/* set current position pointer in the third line type box */
SetPosition(f,(TYPE BOX X+210),(TYPE BOX Y+(TYPE BOX H/2))):

/” draw a straight line in this box */
PaintLine(f.80.0):

/* center the text relative to position pointer */
SetJustification(f.VT CENTER):

/* set current position pointer in the center of the dashedline type box */
SetPosition(f.(TYPE BOX X+(7*BOX WIDTH)).
(TYPE _ BOX Y+(TYPE BOX _H/2-4))):

/* draw the string in the box */
PaintString(f.VT STREND." ")

/* set current position pointer in the center of the circle box */

60

o 0 e
Baoelh “,0.‘.9“’_),‘,02\'.! i

setPosition{f.(CIRC BOX X+BOX WIDTH/2).
(CIRC _ BOX Y+BOX HEIGHT/")

/” draw a circle in the circle box */
PaintCircleBorder(f.4): .

/™ if one of the type boxes is touched then invert the box */
if (touchbool == TRUE)
InvertRegion(f,(TYPE BOX X+blackobj*(2*BOX WIDTH)).
TYPE BOX Y ,(2*BOX _WIDTH), TYPE BOX H):

/™ set current position pointer to the upperleft corner of mode boxes */
SetPosition(fMODE BOX XMODE BOX Y):

/* draw the border of the mode boxes */
PaintRectangleBorder(f MODE BOX WMODE BOX H):

/* draw the vertical lines to separate the modes */
for (i=(MODE_BOX X+(2*BOX WIDTH));
i<(MODE _ ‘BOX ’(+\/IODE BOX W):i+=(2*BOX WIDTH)) {
SetPosition(f..MODE BOX Y)
Pathme(f.O,BOX_HEIGHT).
} /* end for */
/™ center the text relative to position pointer */
SetJustification(f,VT CENTER):

/* set current position pointer in the center of the "Draw" mode box */
SetPosition(f,(MODE BOX X+BOX WIDTH).
(MODE _ BOX Y+(\/IODE BOX H/2))):

/* draw the the string "Move" inside this box */
PaintString(f.VT STREND,"Draw"):

/* set current position pointer in the middle of the "Move" mode box */
SetPosition(f.(MODE BOX X+(3*BOX WIDTH)).
(MODE _ BOX _Y+(MODE BOX H/2))):

/* draw the the string "Move" inside this box */
PaintString(f.VT STREND,"Move"):

/™ set current position pointer in the middle of the "Delete" mode box */
SetPosition(f.(MODE BOX X+(5"BOX WIDTH])),

(MODE _ BOX _Y+(MODE BOX H/2))):
/” draw the the string "Delete" inside this box */

61

Inlotats

T S AR MGy p O S T0) D943 g (]

%)

(e LGOS
0, :.l !‘G S A

TR

AN}

PaintString(f\'T STREND."Delete"):

/" invert the first box "Draw" mode to indicate that it is defauit mode "/

InvertRegion(f.(MODE BOX X+current mode” (2°BOX WIDTH)).
MODE BO). Y (2"BOX " V\IDTH) \1ODE_BOJ_H)

} /7 end function */

void RefreshBoxes(x,y.w.h)
short x,y,w.h:

{

/* Each window has an associated rectangular area known as its clipping

bounds.Any object or part of an object drawn outside this area is not
displayed. ¥/

short ex.cy.cw.ch,1,a;

/* return the X and Y coordinates of the upper left corner.width and height
of the window that are the current clipping bounds . */
GetPermanentClipping(f,&cx,&cy &ew,&ch);

/* specify the new rectangular area known as schema design area */
SetPermanentCllppmg(f DRAW BOX X-BOX LINE.DRAW BOX Y-
BOX LINEDRAW BOX W+(2*BOX LINE).
DRAW BOX H+(2*BOX LINE));

/" restrict the current clipping bounds to the schema design area */
RestrictPermanentClipping(f.x,y,w,h):

/™ set the current color to white */
SetColor(f.VT White):

/" set current position pointer to the upper left corner of schema drawing
area */

SetPosition(f.x,y):

/* paint the schema design area to white */
PaintRectanglelnterior(f.w.h);

/* draw all the rectangles in the array of records "dlist":if the rectangle
represents a generalized object then draw double rectangle */
for (i=0:i< =npoints:;i++) {

62

X if (dlist[i].genbool == FALSE)
Y DrawRectangle(&dlist{i}):
) else if (dlist|i].genbool == TRUE)
. DrawRectangle2(&dlist[i]):
o boolcirc = FALSE:
) } /* end for */
n /™ set the current color to black */
' SetColor(f.VT Black);
: /™ set current position pointer to the upper left corner of the schema
5] design area */
B SetPosition(.DRAW BOX X.DRAW BOX Y):
o /™ draw the rectangle border of the schema design area ¥/
) PaintRectangleBorder(.DRAW_BOX_W.DRAW_BOX_H);
Y
N
.E:: /™ set current clipping bounds back to the entire window */
‘ SetPermanentClipping(f.cx.cy.cw.ch):
::;. } /* end function */
& . void Refresh(id.x,y,w.h)
;‘,!',o int id:_
,u{al . short xjy,w.h;
Ry {
‘::: short cx.cy.cw.ch:
. /” zet X.Y coords. and width and height of the window for clipp bounds */
,}E., GetPermanentClipping(f.&cx.&cy.&cew,&ch);
s
:::: /* set current clipping bounds the schema design area */
. SetPermanentClipping(f.x,y.w.h):
3
LTy
:' /* draw the background */
Background():
ﬂ
4l

/” draw the schema design area and the rectangles in it */
RefreshBoxes(x,y.w,h):

/” set current clipping bounds back to the entire window */)
SetPeymanentClipping(f.cx.cy.cw.ch):
} /” end function */

63

L S LY YR
1 R RE L AR (LR 'ri»ﬁ

Finish{)
{

/' set current clipping bounds to entire window */
SetPermanentClipping(f.0.0.10000.10000):

/* set current position pointer to the upper left corner of the window */

;33. SetPosition(f,0,0):
)
Ry, /™ set current color to white */
I SetColor(f.VT_White);
b
p ‘:' /* paint the entire window to white */
. PaintRectangleInterior(f.10000.10000):
A
:;\‘ /™ set current state of the window */
Ok SetWindowState(f.&istate):
doN
s
Hete /™ write out any data buffered for the window */
e Flush(f);
}_ o] } /™ end function */
i
:
A8 TouchBoxes() '
r"h.&. { -~
e
ﬂ: short x,y.w.h:
e
o /™ continue until "exit" command is received from pop-up menu */
e for (33) {
:,:a‘ /* get a single input sequence */
NN switch(getvtseq(f.&input)) {

/* if input is received via mouse */

T case VT MOUSE :

“- 2 repeat = O:

: i /* which mouse button is used? */
": switch(input.u.mouse.buttons &

. VT MOUSE LEFTIVT MOUSE MIDDLE/VT MOUSE RIGHT)) {
% :: /* if the right most button is used then repeat the last action */
p ;\ case VT MOUSE RIGHT:

'f'-\;: repeat = 1:

ney,

R 64
En':'t

o

o

Ca, Y ARG i o’ ot A - 'R V- % ;) e
B v DOOCOE ¢3¢ \ », ® i S U b (] J N N
B A A N A I O AT A 3 I O IR 2 P I T) TR .. o BN SR SO W

;.
i

1
Ve e S0 N0y O™ AT LY
RARRROOOCN AR Y R
. L et

o
Vs

/" if the left most button is used
case VT MOUSE LEFT:

/” if the mouse is inside the schema design area */
if (UseableCoordinates()) {

/* set clipping bounds to schema design area */

SetPermanentClipping(f DRAW BOX X.DRAW BOX Y.
DRAW BOX W.DRAW BOX H):

/* check current mode */

switch (current mode) {

/* if the current mode is draw mode..." /
case DRAW MODE:

/* check the current type */
switch (current_type) {

/* if object box is selected,then draw a rectangle */
case OBJECT TYPE:

DrawBox();

break:

/*if "GEBOBJ" box is selected.then draw double rect.”/

= case GENOBJ TYPE:

DrawBox():
break:

/* if straight line box is selected.then draw straight
lines between rectangles */
case LINE TYPE: '
DrawLines():
break:

/* if dashed line box is selected.then draw dashed
lines between rectangles >/
case DOTLINE TYPE:
DrawDashedLines():
break:

}
break:

/* if the current mode is "Move" mode.then move a

65

A T L . ~L 0 e Y G USRS)
S U e A O A% X 1) » N

box pointed by the mouse
case MOVE MODE:
MoveBox():
break:

/™ if the current mode is "Delete" mode.then delete a
box pointed by the mouse.
case DELETE MODE:
DeleteBox();
break:
default:
break:
} /* end switch */
/" set clipping bounds to the entire window */
SetPermanentClipping(f,0.0.10000,10000):
}
break:

/* if the middle button is used... */
case VT MOUSE MIDDLE:

/* set the current position pointer to the place that
mouse currently stays x/
SetPosition(f,input.u.mouse.x.input.u.mouse.y);

/* check the answer from the pop-up menu */
switch(DisplayPopUp(f."do clear Exit ")) {

/* if the answer is "clear"... */
case 1:
npoints = -1: /* no more records of rectangles */

/™ set current position pointer to the upper left corner
of the schema design area =/
SetPosition(f.DRAW BOX X.DRAW BOX Y):

/* set current color to white ¥/
SetColor(f.VT White):

/* paint schema design area to white */
PaintRectanglelnterior(f DRAW BOX W.DRAW BOX H):
break:

b ooy e oy

-
Q

'y

o g
(e .

;h. 2h

)
t

s

g

ot
O

» 9]
)

case 2:
return:
break:
} /7 end switch(DisplayPopUp) */
break:
}
break:
/™ if keyboard is used... ¥/
default:
/™ draw a status bar near the bottom of the screen */
DisplayStatus(f."use the mouse"):
break: .
} /* end switch(getinp) "/

} /7 end for */

} /* end function */

/* this routine takes care of drawing a rectangle.which represents an aggregate
object.with the nume of the object in it . if the object has a disjunctive
relation it draws the rectangle with a circle. X.Y coordinates and width.
height of the rectangle.the name of the object and information wheter it
has a disjunctive relation is received with the element of the structure
"rectangle". */

DrawRectangle(r)

struct rectangle *r:

{

/™ set the current position pointer to the upper left corner of rect. */
SetPosition(f.r- >x.r- >y):

/* set the current color to white */
SetColor(f.VT White):

/” paint inside the rectangle to white */
PaintRectanglelnterior(f.r- >w.r- >h):

/" set the current color to black */
SetColor(f.V'T Black):

/" set the current position pointer to the upper left corner of rect. */
SetPosition(f.r- »x.r- >y):

67

N e e oa - - -~ - e o - .
RN Lo /‘.\-('"4‘.'-‘:' .‘-':"-.1'- "\"\J‘.“:. \'f"-_ :."\F"\J‘\J‘YI.‘ \'f‘ SN

A e e JTe Lt Te L Te e e e
Lo SO Rl

"-1-'”.:'"‘.'-.-".»‘»

") _’_\‘

g BRI P

P R

- -

XNy

-

/* draw the border of the rectangle */
PaintRectangleBorder(f.r- ~w.r- >h):
r- >genbool = FALSE:

/™ set current position pointer on the middle of the rectangle */
SetPosition(f,(r->x+r->w/2),(r->y+r->h/2)):

/* center the string relative to the current position pointer */
SetJustification(f.VT _CENTER);

/* draw the name of the object in the rectangle */
PaintString(f.VT STREND.r->name):

/* if object has a disjunctive relation .then draw a small circle
under the upper border of the rectangle */

if (r->circbool == TRUE) {
SetPosition(f,(r- >x+r->w/2),r->y+3):
PaintCircleBorder(f.4);

} /*endif */

boolcirc = FALSE:

} /* end fuction */

/* this routine takes care of drawing a rectangle,which represents a generalized
object,with the name of the object in it . if the object has a disjunctive
relation it draws the rectangle with a circle.X.Y coordinates and width.
height of the rectangle.the name of the object and information wheter it
has a disjunctive relation is received with the element of the structure
"rectangle". */

DrawRectangle2(r)
struct rectangle *r:
{

/* set the current position pointer to the upper left corner of rect. */
SetPosition(f.r->x.r->y);

/* set the current color to white */
SetColor(f.VT White);

/* paint inside of the rectangle to white */
PaintRectanglelnterior(f,r- >w.r- >h):

68

Sy W RO I M O IO K S i S A R T

1A

LM,

o e @ el

o . oo . oo

/” set the current color to white */
SetColor(f.VT Black):

/™ set the current position pointer to the upper left corner of rect. */
SetPosition(f.r->x.r->y);

/* drawm the border of the rectangle */
PaintRectangleBorder(f.r->w,r->h);

/* set the current position pointer to the upper left corner of the
second rectangle */
SetPosition(f.r->x+4.r->y+4);

/™ set the current color to white */
SetColor(f.VT White):

/* paint inside the second rectangle to white */
PaintRectanglelnterior(f,r- >w-8,r->h-8):

/* set the current color to black */
SetColor(f.VT Black):

/* set.the current position pointer to the upper left corner of the.
second rectangle */
SetPosition(f.r->x+4,r->y+4):

/* draw the border of the second rectangle */
PaintRectangleBorder(f.r->w-8.r->h-8}:

r ->genbool = TRUE:

/* set the current position pointer in to the middle of the rectangle */
SetPosition(f,((r->x+4)+(r->w-8)/2),((r->y+4)+(r->h-8)/2)):

/* center the string relative to the current position pointer */
SetJustification(f.VT CENTER):

/* draw the name of the object inside the rectangle */

PaintString(f,VT STREND.r->name):

/* if object has a disjunctive relation .then draw a small circle
under the upper border of the rectangle */

if (r->circbool == TRUE) {
SetPosition(f,(r->x+r->w/2).r->y+3):

69

PaintCircleBorder(f.4):
} /" end if ¥/
boolcirc = FALSE:
} /7 end function */

int UseableCoordinates()

. int option;
struct wstate save;

int fd;

/* if the mouse is currently in the schema design area... */

if ((input.u.mouse.x > DRAW BOX X) &&
(input.u.mouse.x < (DRAW BOX X+DRAW _BOX W)) &&
(input.u.mouse.y > DRAW BOX Y) &&
(input.u.mouse.y < (DRAW _BOX Y+DRAW BOX Hj)) {
return(1):

} /T endif */

/* if the mouse currently inside one of the type boxes... */

else if ((input.u.mouse.x > TYPE BOX X) &&
(input.u.mouse.x < (TYPE _ BOX X+TYPE _BOX W)) &&
(input.u.mouse.y > TYPE BOX Y) &&

(ifiput.u.mouse.y < (TYPE BOX Y+TYPE BOX H))) {.
if (touchbool == TRUE)
InvertRegion(f,(TYPE BOX X + blackobj * (2* BOX WIDTH)).
TYPE BOX Y.(2*BOX WIDTH).TYPE BOX H\:
touchbool = TRUE;

/* find out in which type box the mouse currently put */

current_type = ((input.u.mouse.x-TYPE BOX X)/(2*BOX WIDTH)+4):

/* invert the box where currently the mouse is put */
if (current type == 4)
blackobj = 0:
else if (current type == 5)
blackobj = 1:
else if (current type == 6)
blackobj = 2:
else if (current type == 7)
blackobj = 3:
InvertRegion(f (TYPE BOX X + blackobj * (2* BOX WIDTH)).

70

TR NI RN AN N P . X ST N T NN AN O

8L

A

o R

TYPE BOX Y.(2'BOX WIDTHI.TYPE BOX H):]

/* if the "OBJECT" box is selected... "/

if ({(input.u.mouse.x-TYPE BOX X)/(2*BOX WIDTH)) == 0) { :
/* present object entry menu and get th. name of the object and ,

the relation names of the object */ ki
PresentMenu{&object entry.answer): -

¢ /™ then present the attribute menu and get the attribute names */
‘ PresentMenu(&attribute_menu.attr answer):
. } /* end if */ .
else if (((input.u.mousex-TYPE BOX X)/(2*BOX WIDTH)) == 1) {
PresentMenu(&genobj menu.answer): y
} /7 end else if */
} /* end else if */
; /* if the circle box is touched... */
else if ((input.u.mouse.x > CIRC BOX X) &&
; (input.u.mouse.x < (CIRC BOX X+CIRC _BOX W)) && ,
1 (input.u.mouse.y > CIRC BOX Y) 7
F . (input.u.mouse.y < (CIRC_BOX_Y+CIRC_BOX H)) {
boolcirc = TRUE;
} /* end else if */
/* if one of the mode boxes is touched invert the region and change the

g g R WL

-]

. made */

. else if ((input.u.mouse.x > MODE BOX X) &&

K (input.u.mouse.x < (MODE BOX X+MODE BOX W)) && *
' (input.u.mouse.y > MODE BOX Y) T&& '

(input.u.mouse.y < (\/IODE BOX Y+MODE BOX H))) {
InvertRegion(f,(MODE _ BOX X + current mode * (2* BOX _WIDTH)).
MODE BOX Y,(2*BOX WIDTH).MODE BOX H):

current mode = (input.u.mouse.x-MODE _BOX X)/(Z*BOX _WIDTH):
InvertReglon(f(MODE BOX X + current mode * (2* BOX_WIDTH))
’ MODE BOX Y,(2*BOX WIDTH),MODE BOX H):

} /' end else if */

return(0):
} /7 end function */

oY

- _a» <

oy

‘ int IdentifyBox()
' {

short index:

-\

71

.

e ‘!15‘!“&‘»‘ N .a a & ‘&‘ [} 'q‘u‘ (IOUM

0 -t ACA RIS W0 -" T
UOGOOOGIS A RN WIS - 4 7 BN R b e R RAS AN

iongt.

/” find out which record of the arrayv i~ selected either to move or delete
and return the record number of the rectangie. */
for (index = npoints:index >=0:index--) {
if ((input.u.mouse.x >= dlist(index].x-BOX LINE) &&
(input.u.mouse.x <= (dlist[index].x+dlist/index].w+2*BOX LINE)) &&
(input.u.mouse.y >= dlist|index|.y-BOX LINE) &&
(input.u.mouse.y <= (dlist{index].y+dlist(index].h+2*BOX LINE)))
break:
} /* end for */
return(index):
} /* end function */

MoveBox()
{

short box.x,y.w,h,i:

/*if the mouse inside a rectangle.then get the ID number of the rectangle */
if ((box = IdentifyBox()) >= 0) {

x = dlist[box|.x - BOX LINE:

v = dlist|box].y - BOX LINE:

w = dlist[box].w + (BOX LINE*2);

= dlist[box].h + (BOX LINE*2):

/* track the movement of the mouse with the box until a mouse button is
released. */
TrackFixed Box(f.
&dlist|box].x.&dlist[box].y.dlist[box].w.dlist[box].h.
DRAW BOX X.DRAW BOX Y.DRAW BOX W.
DRAW BOX H.BOX LINE); B
dlist[npoints+1] = dlist{box];

for (i=box:i< =npoints;i++) {
dlist{i] = dlist[i+1];

} /= end for */

RefreshBoxes(x,y,w.h):

if (dlist[i].genbool == FALSE)
DrawRectangle(&dlist[i]):

else if (dlist[i].genbool == TRUE)

72

AN (IR TR T, W { ¥) O ‘
NS I ST T T L A ODRS N TR L O A o AR OR i AP C Ry

DrawRectangle2(&dlistli}):
} /" endif 7/
else {
/* if the mouse is not in a rectangle.then draw a status bar near the
" bottom of the screen */
DisplayStatus(f,"not a box"):
} /* end else */

} /* end function */

DeleteBox()
{

short box,x.y.w.h.i;

/* get the ID number of the box */
if ({(box = IdentifyBox()) >= 0) {
x = dlist{box].x - BOX LINE;
v = dlist[box].y - BOX LINE:
w = dlist{box].w + (BOX_LINE*2):
h = dlist[box|.h + (BOX LINE*2):

/* delete the box */

for (i=box;i<npoints;i++) {
dlist[i] = dlist[i+1};

¥

/* decrease the number of the boxes */
npoints--;

/* draw the new array of boxes */
RefreshBoxes(x,y.w,h):

} /" endif */

else {
/™ if the mouse is not in a rectangle.then draw a status bar near the

bottom of the screen */

DisplayStatus(f,"not a box");

} /" end else */

} /” end function */

DrawBox()

73

TarY ¥ W

(h

P L f) 0B o v Ta%, 4", f . %) N
Ja'Y ',,‘! _5‘0 ' ‘-}"50 8 ‘i,,‘«@.‘:‘;. “l.‘!’ilf‘h.!‘ .g'?\'vrx.é“i Qﬁ,‘,;ﬁ,!';‘v “\'z...ﬂli“ “i*;.\,‘.z [\ #.{“y«,i Pk

e s Wit

'/:‘,'b -
R

3,40

R

N

.}

i

I {

’ /' increase the number of the rectangles in the array "/

. npoints+-+:
A ‘ -

A /* put the x position of the mouse to the x coordinate of the rectangle */
:':‘3 dlist|npoints].x = input.u.mouse.x:
it /* put the y position of the mouse to the y coordinate of the rectangle */
’*’!‘d’ dlist|npoints].y = input.u.mouse.y:
:;’%:; dlist{npoints|.w = 0:

%} dlist[npoints].h = 0:

R /* put the object name.relation names and subobject names received from the
:: " user into the last added element of the rectangle */
::;f:: copy(objname.dlist|npoints].name):
j::.::: copy(ansl.dlist[npoints]|.rell):

- copy(ans2.dlist|npoints].rel2):

i copy(ans3.dlist{npoints].rel3);
'::?_ copy(ans4.dlist[npoints].subobjl):
'.“:4.:“ copy(ans3.dlist{npoints].subobj2):
‘,'.;;',' copy(ans6.dlist{npoints].subobj3);
Wi /* clear the arrays which is used to get information from user */ !
;5‘ -3 copy(dummy.objname):
:..» copy(dummy.ansl):
;:{:g g copy(dummy.ans2):

' copy(dummy.ans3):
A copy(dummy.ans4):
:' . copy(dummy.ans5):
{:‘a copy(dummy.ans6):
il

i /* if the right most button is clicked.the width and height of the
Iy last element becomes the same as the element one before */ ‘
"': if (repeat != 0) {
1o . .
Farl if (npoints > 0) {
‘i;‘: ‘ dlist[npoints].w = dlist[npoints-1].w:
il dlist|npoints].h = dlist[npoints-1].h;
:;‘.: } /* end if */
,fo::::' } /" end if */ .
.':.:.q /™ track the movement of the mouse with the lower right corner of the
.'::::: rectangle until a mouse button is released and return the width and
e height of the rectangle */

P else {

.,ﬁ;

! 4

‘;ﬁ,
e

At L O A A AR AL S AR RS S AT R AL R S CA S e, |

NS
'q:’,f
2
! TrackRubberBox(1.dlist[npointsi.x.dlistinpoints,.y.
. &:dlistinpoints|.w.&dlistinpointsj.h.
= DRAW BOX X.DRAW BOX Y.DRAW BOX W.
. DRAW BOX H.BOX LINE):
e)/ en e | |)
W /* if the movement of the mouse is to the left relative to the x position
'::: of the rectangle... */
: _if (dlist[npoints].w < 0) {
’ dlist[npoints].w = -dlist|npoints].w;
ol dlist|npoints].x -= dlist[npoints|.w;
. } /* end if */
:: /* if the movement of the-mouse is up relative to the y position
‘ of the rectangle... */
o if (dlist{npoints].h < 0) {
:ui:t: dlist|npoints|.h = -dlist|npoints|.h:
:‘ﬁ" dlist{npoints].y -= dlist[npoints].h;
::l:: } /* end if */
, switch (current _type) {
“ case OBJECT TYPE:
o if (boolcirc == TRUE)
““ - dlist|npoints|.circbool = TRUE;
f:}: ’ else
* ' dlist[npoints].circbool = FALSE;
o~ ! DrawRectangle(&:dlist[npoints]);
% break:
S case GENOBJ TYPE:
K> if (boolcirc == TRUE)
* dlist{npoints|.circbool = TRUE:
e else
) dlist{npoints].circboo] = FALSE:
':l': DrawRectangle2(&dlist[npoints]);
Sog
ot break:
& } /* end switch */
- } /* end function */
&9
24t DrawLines()
2
{
w short i.: :
‘; f::,' int width.height:
,,:}
e /* check the relations between objects if there is a relation then
)) draw a straight line between them */
L
I 75
,‘iéf,

DR Ri RN p 1 1 e
R At “'.y'r ‘4‘;“‘:!"!”:69.0’5!!';-?5‘)v 7.‘1:l',,l‘,'i',;|’§.l'| l';‘l‘g U] ‘i “:l';‘i’:\

5

for (i=0:- =npoints:i++) {
for (a=0:a<.=npoints:a++) {
SetColor(f.VT Black):
if ((strcmp(dlist[i].rel1.dlist[a].name) == 0) ||
(stremp(dlist|il.rel2.dlist{a].name) == 0) ||
(stremp(dlist|i].rel3.dlist[a].name) == 0)) {
Draw(&dlist|i],&dlist{a});
} /* end if */
} /* end for */
} /* end for */
} /* end function */

DrawDashedLines()
{

short i.a:
int width.height:

/* check if there is a relation between subobjects or between an object
and subobject.if there is a relation.then draw a straight line between
them.(it should actually be dashed line but since there is no library
function to draw dashed line. a straight line is used instead */

for (i=0:i<=npoints:i++) {
for (a=1;a<=npoints:a++) {

SetColor(f.VT Black):
if (dlist[a].genbool == TRUE) {
if ((stremp(dlist|i].rell.dlist{a].subobjl) == 0)
(stremp(dlist[i].rel2.dlist[a].subobjl) == 0)
(stremp(dlist{i].rel3.dlist[a].subobjl) == 0)
Draw(&dlist[i],&dlist{a]);
} /* end if */

if ((strcmp(dlist[i].rell,dlist[a].subobj2) == 0) ||
(stremp(dlist(i].rel2.dlist[a].subobj2) == 0) ||
(stremp(dlist[i].rel3. dlist[a].subobj2) == 0)) {

Draw(&dlist[i],&dlist[a});

} /" end if */

if ((stremp(dlist[i].rel1.dlist[a].subobj3) == 0) ||
(stremp(dlist(i].rel2.dlist[a].subobj3) == 0) ||
(stremp(dlist[i].rel3.dlist[a].subobj3) == 0)) {
Draw(&dlist(i] . &dlist[a]):

} /* end if */

} /" end if */

76

AT §,%,0,8 " a0
RO LN WO XN Z‘-}'»," LRRLN

L FLMILENR T
Ty ‘ﬁ.";. LA "19’.‘\.-‘:‘;5",‘\ T

T TT T

g~
_]} r.

-

-

SETTS

if (dlist[i].genbool == TRUE) {
if ((stremp(dlist|ij.subobjl.dlistiaj.name) == 0} |,
(stremp(dlist{i].subobj2.dlist{aj.name) == 0) ||
(stremp(dlist{i).subobj3.dlist[a|.name) == 0
Draw(&dlisti].&dlist[a));
} /* endif */
} /* end if */
} /* end for */
} /* end for */
} /* end function */

Draw(r,s)
struct rectangle *r,*s:

{

int width height;

/* take two rectangles that there is a relation between them and draw
a line depending on the positoins of the rectangles */

if ((r->y+r->h) < s->y) {
SetPosition(f,(r->x+r->w/2),(r->y+r->h));
width = (s->x+s->W/2)-(r->x+1->w/2):
height=s->y-(r->y+r->h);
PaintLine(f,width,height):

} /*endif */

else if ((s->y+s->h)<r->y) {
SetPosition(f,(s->x+s->w/2),(s->y+s->h)):
width = (r->x+r->w/2)-(s->x+s->w/2):
height= r->y-(s->y+s->h);
PaintLine(f,width.height):

} /* end else if */

else if ((r->y < s->y) && (r->x < s->x) && ((r->y+r->h)>s->y)) {
SetPosition(f,(r->x+r->w),(r->y+r->h/2)):
width = s->x-(r->x+4r->w);
height= (s->y+s->h/2)-(r->y+r->h/2);
PaintLine(f.width,height);

} /* end else if */

else if ((r->y > s->y) && (r->x<s->x) && (r->y < (s->y+s->h))) {
SetPosition(f,(r- >x+r->w),(r->y+r->h/2}}):
width = s->x-(r->x+r->w);
height= (s->y+s->h/2)-(r->y+r->h/2):

77

i ﬂﬁ"“ 0"'5“‘

A
PR WY
» Y

N t

) ,

¥ PaintLine(f.width.height): A -
} /" end else if */

4 else if ((r->v < s->y) && (r->x>s>x) && ((r->y+r->h)>s->y)) { ,

: SetPosition(f.(s- >x+s->w),(s->v+s->h/2)):

{ width = r->x-(s->x+s->w}):

& height= (r->y+r->h/2)-(s->y+s->h/2):

' PaintLine(f.width height): .
p } /* end else if */ :
p else if ((r->y > s->y) && (r->x>s->x) && (r->y < (s->y+s->h))) { .
B SetPosition(f,(s->x+s->w),(s->y+s->h/2)):

: width = r->x-(s->x+s->w);

height= (r->y+r->h/2M(s->y+s->h/2):

PaintLine(f.width.height):

3 } /* end else if * g
A } /* end function */ ‘

3 stremp(s.t)
char s[},t[]:

4 { . . :

int i; .
Lk ' .
e i=0;]
: while (s[i] == t[i]) 2
g if (sfi++] =="") '
' return(0);
N return(s[i}-t[i]):
4 } /* end function */
:
’
!
; ;
"

' |
. 1
P
+

78 ;

t
;] SO f I MG I
] ,l’i Q'_.,A’g_“'p‘..gil.g'G [N ,",“'(‘!I'q,i‘hl"hlh [LR L

DAOE o g o8 gt
UL

v
3y

BIBLIOGRAPHY | 4

! Wu. C. T. A New Graphics user Interface for Accessing Database. Naval
o Postgraduate School. Department of Computer Science. Monterey. CA 93943.

Ullman, Jeffrey D.. Principles of Database systems. Computer Science Press.

o Inc.. Rockville, Maryland 20850, 1982.

o

‘{. Kroenke. D.. Database processing. Science Research Associates. Inc.. Chicago,

i} 1083,

W Herot. Christopher F., "Spatial Management of Data" ACM Transactions

i’; on Database Systems. December 1980. Volume 3. No. 4. Pages 493-514.

o

?“'

’.;: Daniel. B. and Hull. R., SNAP: A Graphics—based Schema Manager.

E Computer Science Department, University of Southern California. Los Angeles,

" CA, 1986.

I:g :

‘i:y: . Stonebraker. M., TIMBER: A Sophisticated Relation Browser. Department

“:‘ of Electrical Engineering and Computer Science. University of California,
, Berkeley, CA. 1982.

;E:: Wong, -Harry K. T. and Kuo, 1., GUIDE: Graphical User Interface for

:::" database Exploration, Lawrence Berkeley Lab., University of California.

f.:: Berkeley CA, 1982.

o Braegger. Richard P. and Dudler A. and Rebsamen. J. and Zehnder C. A..

:;‘j: Gambit: An Interactive database Design Tool for Data Structures.

:c:: Integrity Constraints and Transactions. Eidgenoessische Techische

g&: Hochschule(ETH), Institut fur Informatik. Zurich, Switzerland. 1984.

ey Rowe. L. A.. Fill-in-the-Form Programming. Computer Science Division,
EECS Department, University of California. Berkeley. CA. 1985.

R 79

3 O Y A " OGS0 - s,
i"“‘~‘,~'. .l.'! ;2 ’v?‘,-f‘u!‘. A a‘.‘n"'n‘f'-"'o' ‘vl.‘.l‘al’ W Il.‘l'?‘l'!.l'!.h"'l'!‘u s ,‘v'. R CRO LT

o R AN) 3 P!
ISR Ty ﬁvfl?)?l.!g‘,af!.-!‘

INITIAL DISTRIBUTION LIST

" =

B

;.

u No. Copies

Ry !

8 1. Defense Technical Information Center 2

D Cameron Station

.‘: Alexandria, Virginia 22304-6145

o 2. Library, Code 0142 2

::1 Naval Postgraduate School

::: Monterey. California - 93943-5000

.t ’

!:| :

© 3. Chairman, Code 52 1

e Departinent of Computer Science

é Naval Postgraduate School

W Monterey. California 93943-5000

3

A 4. Computer Technology Curricular Officer. Code 37 1

e Naval Postgraduate School

é{ Monterey, California 93943-5000

W 5. C.T.Wu. Code 53Wq 1

o Department of Computer Science

Naval Postgraduate School

o Monterey, California 93943-5000

R, 6. 1STLT Alparslan Horasan 4
Enerji Evleri. Inam Htp Ls. Kar.

o, B. Blok Kat:4 Daire:28

4.;‘, Aydin / TURKEY

.‘:’

" 7 Hv. K. K. Ligi 2

' Kutuphanesi

A Bakanliklar/Ankara TURKEY

f

4 8. Hv. Egitim K. Ligi 1

:o: ' Kutuphanesi
Guzelyali/Izmir TURKEY

’ 9. Hava Harp Okulu , 1 -

o Kutuphanesi

b Yesilyurt/Istanbul TURKEY |

By 80

il

e . ‘ _ R T A O O ORI A T4 . O AN
RO My WA sa‘u:‘\..'a‘:‘o WO S IO S R et 5:",‘»‘ R eSO, “""

:: o:: W o,
S

‘.' 'J
> g ‘(‘ "y ‘)
4

et N
g 7 .mN Q"‘a " AR

2

